Меню
Бесплатно
Главная  /  Кашель у взрослых  /  Энергетика живой клетки кратко. Превращение энергии в клетке. Возможны ли другие пути получения энергии

Энергетика живой клетки кратко. Превращение энергии в клетке. Возможны ли другие пути получения энергии

  • аблица 10. Строение клетки. Структурная система цитоплазмы
  • Важно не время приема пищи, а момент, когда она попадает в клетки.
  • Вакша-стхала-шакти-викасака-1 (укрепление грудной клетки)
  • Если Артур или Евгений получают деньги от зрителей, они отдают их Администратору. Работники сайта украшают сцену, готовятся к Новому году.
  • Закон № 3. Идея создает образ формы, который притягивает физическую энергию и, по истечении необходимого времени, воплощается в реальности.
  • Известно, что альдостерон регулирует содержимое натрия в организм. Какие клетки надпочечныхжелез вырабатывают этот гормон?
  • КИСЛОРОД

    КИСЛОРОД: ЖИЗНЕТВОРНАЯ НЕОБХОДИМОСТЬ

    И «РАЗУМНЫЙ УБИЙЦА»

    КИСЛОРОД КАК ЖИЗНЕННАЯ НЕОБХОДИМОСТЬ

    Кислород – важнейшее вещество организма, абсолютно необходимое для жизни человека и животных. Кислород является источником жизни всех клеток. Без него мы не можем прожить и нескольких минут. Кислород необходим, прежде всего, для выработки энергии в клетках. Это происходит в так называемой дыхательной цепи во внутренней мембране митохондрий. Именно здесь формируется основной состав универсальной энергетической молекулы АТФ. Без кислорода нет энергии, а без энергии невозможна никакая работа, совершается ли она биохимическим или мускульным путем.

    КАК КЛЕТКИ ПОЛУЧАЮТ ЭНЕРГИЮ

    Доктор Отто Варбург дважды удостаивался Нобелевской премии за свои исследования о большом значении кислорода в жизни клеток. Вкратце его заключения сводятся к следующему.

    Здоровые клетки разлагают поглощаемые с пищей углеводы до глюкозы. Глюкоза запасается организмом. Когда клетки нуждаются в энергии, они разлагают глюкозу посредством цепи химических реакций, в последнем звене которой нужен кислород. При этом вырабатывается энергия, запасаемая в форме АТФ, энергетической молекулы клеток.

    В процессе дыхания кислород поступает в легкие, где он абсорбируется в кровь и переносится к миллиардам клеток организма. Носителем выступает гемоглобин красных кровяных телец. Достигнувший клеток кислород расходуется на превращение принимаемой пищи с образованием АТФ, тепла и воды. Чем

    больше наша потребность в тепле или энергии, тем интенсивнее поглощение кислорода.

    Питательные вещества служат топливом для выработки энергии в организме, а кислород обеспечивает сгорание этого топлива. Этот процесс горения называется окислением, причем топливом служат, прежде всего, углеводы, которые окисляются (сгорают) при участии кислорода. Именно поэтому клетки нуждаются в непрекращающемся и достаточном поступлении кислорода. Лишь в этом случае они будут нормально функционировать, оставаясь здоровыми и снабжая организм энергией.

    Кровь состоит из трех основных компонентов: плазмы, красных и белых кровяных телец. В плазме содержатся все необходимые клеткам вещества, в частности, кислород. Однако клеткам организма человека, в отличие от рыб, для жизни которых достаточно несвязанного кислорода плазмы крови, нужно больше кислорода, чем в состоянии доставить плазма. Эту потребность восполняют красные кровяные тельца, которые важны именно потому, что они могут транспортировать большое количество кислорода к различным тканям тела.

    Вместе с тем важно знать, что красные кровяные тельца получают кислород из плазмы, переносят его к капиллярам, где кислород отдается плазме и транспортируется через клеточные мембраны для использования в происходящем в клетках обмене веществ. Логично, таким образом, предположить, что если можно увеличить количество кислорода в плазме, то увеличится и количество кислорода, достигающего клеток.

    Для нормального транспорта кислорода в клетки через клеточные мембраны необходима определенная среда во внеклеточной жидкости. Организм регулирует ее состав с высокой точностью. Эта среда должна иметь необходимый баланс жидкости, минералов и электролитов, рН, белков, осмотического давления и др., а также очищаться от токсичных метаболитов для облегчения переноса кислорода в клетки. Различные нарушения этого баланса во внеклеточной жидкости приводят к кислородному голоданию клеток. Это служит причиной большинства заболеваний.


    1 | | | | | |

    Обязательным условием существования любого организма является постоянный приток питательных веществ и постоянное выделение конечных продуктов химических реакций, происходящих в клетках. Питательные вещества используются организмами в качестве источника атомов химических элементов (прежде всего атомов углерода), из которых строятся либо обновляются все структуры. В организм, кроме питательных веществ, поступают также вода, кислород, минеральные соли. Поступившие в клетки органические вещества (или синтезированные в ходе фотосинтеза) расщепляются на строительные блоки - мономеры и направляются во все клетки организма. Часть молекул этих веществ расходуется на синтез специфических органических веществ, присущих данному организму. В клетках синтезируются белки, личиды, углеводы, нуклеиновые кислоты и другие вещества, которые выполняют различные функции (строительную, каталитическую, регуляторную, защитную и т. д.). Другая часть низкомолекулярных органических соединений, поступивших в клетки, идет на образование АТФ, в молекулах которой заключена энергия, предназначенная непосредственно для выполнения работы. Энергия необходима для синтеза всех специфических веществ организма, поддержания его высокоуно-рядоченной организации, активного транспорта веществ внутри клеток, из одних клеток в другие, из одной части организма в другую, для передачи нервных импульсов, передвижения организмов, поддержания постоянной температуры тела (у птиц и млекопитающих) и для других целей. В ходе превращения веществ в клетках образуются конечные продукты обмена, которые могут быть токсичными для организма и выводятся из него (например, аммиак). Таким образом, все живые организмы постоянно потребляют из окружающей среды определенные вещества, преобразуют их и выделяют в среду конечные продукты. Совокупность химических реакций, происходящих в организме, называется обменом веществ нли метаболизмом. В зависимости от общей направленности процессов выделяют катаболизм и анаболизм.

    Катаболизм (диссимиляция) -совокупность реакций, приводящих к образованию простых соединений из более сложных. К катаболическим относят, например, реакции гидролиза полимеров до мономеров и расщепление последних до углекислого газа, воды, аммиака, т. е. реакции энергетического обмена, в ходе которого происходит окисление органических веществ и синтез АТФ. Анаболизм (ассимиляция) - совокупность реакций синтеза сложных органических веществ из более простых. Сюда можно отнести, например, фиксацию азота и биосинтез белка, синтез углеводов из углекислого газа и воды в ходе фотосинтеза, синтез полисахаридов, липидов, нуклеотидов, ДНК, РНК и других веществ. Синтез веществ в клетках живых организмов часто обозначают понятием пластический обмеи, а расщепление веществ и их окисление, сопровождающееся синтезом АТФ, -энергетическим обменом. Оба вида обмена составляют основу жизнедеятельности любой клетки, а следовательно, и любого организма и тесно связаны между собой. Процессы анаболизма и катаболизма находятся в организме в состоянии динамического равновесия или временного превалирования одного из них. Преобладание анаболических процессов над катаболическими приводит к росту, накоплению массы тканей, а катаболических - к частичному разрушению тканевых структур, выделению энергии. Состояние равновесного или неравновесного соотношения анаболизма и катаболизма зависит от возраста. В детском возрасте преобладают процессы анаболизма, а в старческом - катаболизма. У взрослых людей эти процессы находятся в равновесии. Их соотношение зависит также от состояния здоровья, выполняемой человеком физической или психоэмоциональной деятельности.


    82. Энтропия открытых термодинамических систем, уравнение Пригожина .

    Энтропия – мера рассеивания свободной энергии, следовательно любая открытая т/д система в стационарном состоянии стремится к минимальному рассеиванию свободной энергии. Если в силу причин система отклонилась от стационарного состояния, то вследствие стремления к системы к минимальной энтропии, в ней возникают внутренние изменения, возвращающие ее в стационарное состояние. Открытая система, термодинамич. система, способная обмениваться с окружающей средой веществом и энергией. В открытой системе возможны потоки тепла как из системы, так и внутрь неё.

    Постулат И.Р. Пригожина состоит в том, что общее изменение энтропии dS открытой системы может происходить независимо либо за счет процессов обмена с внешней средой (deS), либо вследствие внутренних необратимых процессов (diS): dS = deS + diS. Теорема Пригожина. В стационарных состояниях при фиксированных внешних параметрах скорость продукции энтропии в открытой системе обусловлена протеканием необратимых процессов постоянна во времени и минимальна по величине. diS / dt  min.

    Один из наиболее сложных вопросов - образование, накопление и распределение энергии в клетке.

    Как же клетка вырабатывает энергию? Ведь в ней нет ни атомного реактора, ни электростанции, ни парового котла, хотя бы самого маленького. Температура внутри клетки постоянна и очень невысока - не более 40°. И несмотря на это, клетки перерабатывают такое количество веществ и так быстро, что им позавидовал бы любой современный комбинат.

    Как это происходит? Почему полученная энергия остается в клетке, а не выделяется в виде тепла? Как клетка запасает энергию? Прежде чем ответить на эти вопросы, нужно сказать, что энергия, поступающая в клетку, - это не механическая и не электрическая, а химическая энергия, заключенная в органических веществах. На этом этапе вступают в силу законы термодинамики. Если энергия заключена в химических соединениях, то выделяться она должна путем их сгорания, и для общего теплового баланса неважно, сгорят они сразу или постепенно. Клетка выбирает второй путь.

    Для простоты уподобим клетку «электростанции». Специально для инженеров добавим, что «электростанция» клетки - тепловая. Теперь вызовем представителей энергетики на соревнование: кто больше получит энергии из топлива и экономичнее ее израсходует - клетка или любая, самая экономичная, тепловая электростанция?

    В процессе эволюции клетка создавала и совершенствовала свою «электростанцию». Природа позаботилась обо всех ее частях. В клетке есть «топливо», «мотор-генератор», «регуляторы его мощности», «трансформаторные подстанции» и «линии высоковольтных передач». Посмотрим, как все это выглядит.

    Основное «топливо», сжигаемое клеткой, - углеводы. Самые простые из них - глюкоза и фруктоза.

    Из повседневной медицинской практики известно, что глюкоза - важнейшее питательное вещество. Сильно истощенным больным ее вводят внутривенно, непосредственно в кровь.

    Более сложные сахара также используются как источники энергии. Например, обычный сахар, имеющий научное название «сахароза» и состоящий из 1 молекулы глюкозы и 1 молекулы фруктозы, может служить таким материалом. У животных топливом является гликоген - полимер, состоящий из связанных в цепочку молекул глюкозы. В растениях есть вещество, аналогичное гликогену, - это всем известный крахмал. И гликоген и крахмал - запасные вещества. Оба они откладываются на «черный день». Крахмал обычно содержится в подземных частях растения, например клубнях, как у картофеля. Много крахмала и в клетках мякоти листьев растений (под микроскопом зерна крахмала сверкают как мелкие кусочки льда).

    Гликоген накапливается у животных в печени и оттуда расходуется по мере необходимости.

    Все более сложные, чем глюкоза, сахара до расходования должны распадаться на свои исходные «кирпичики» - молекулы глюкозы. Существуют специальные ферменты, которые разрезают, как ножницы, длинные цепи крахмала и гликогена до отдельных мономеров - глюкозы и фруктозы.

    При недостатке углеводов растения могут использовать в своей «топке» органические кислоты - лимонную, яблочную и др.

    В прорастающих масличных семенах расходуется жир, который сначала расщепляется, а потом превращается в сахар. Это видно из того, что по мере расходования жира в семенах увеличивается содержание сахаров.

    Итак, виды топлива перечислены. Но сжигать его сразу клетке невыгодно.

    Сахара сжигаются в клетке химическим путем. Обычное горение - это соединение горючего с кислородом, окисление его. Но для окисления вещество не обязательно должно соединяться с кислородом - оно окисляется, когда от него отнимают электроны в виде водородных атомов. Такое окисление называется дегидрированием («гидрос» - водород). Сахара содержат много атомов водорода, и они отщепляются не все сразу, а по очереди. Окисление в клетке осуществляется набором специальных ферментов, ускоряющих и направляющих процессы окисления. Этот набор ферментов и строгая очередность их работы составляют основу клеточного генератора энергии.

    Процесс окисления у живых организмов называется дыханием, поэтому далее мы будем пользоваться этим более понятным выражением. Внутриклеточное дыхание, названное так по аналогии с физиологическим процессом дыхания, связано с ним очень тесно. Подробнее о процессах дыхания мы расскажем дальше.

    Продолжим сравнение клетки с электростанцией. Теперь нам необходимо найти в ней те части электростанции, без которых она будет работать вхолостую. Понятно, что полученную от сжигания углеводов и жиров энергию необходимо подавать потребителю. Значит, нужна клеточная, ««высоковольтная линия передачи». Для обычной электростанции это сравнительно просто - провода высокого напряжения протягивают над тайгой, степями, реками, и по ним энергия поступает к заводам и фабрикам.

    Клетка тоже имеет свой, универсальный «провод высокого напряжения». Только в ней энергия передается химическим путем, и «проводами», естественно, служит химическое соединение. Чтобы понять принцип его действия, введем в работу электростанции маленькое осложнение. Предположим, что энергию от высоковольтной линии нельзя подать к потребителю по проводам. В таком случае, проще всего будет зарядить от высоковольтной линии электрические аккумуляторы, транспортировать их к потребителю, обратно транспортировать использованные аккумуляторы и т. д. В энергетике это, конечно, невыгодно. А клетке аналогичный способ очень выгоден.

    В качестве аккумулятора в клетке используется соединение, универсальное почти для всех организмов - аденозинтрифосфорная кислота (о нем мы уже говорили).

    В отличие от энергии других фосфоэфирных связей (2- 3 килокалории) энергия связи концевых (особенно крайнего) фосфатных остатков в АТФ очень велика (до 16 килокалорий); поэтому такая связь называется «макроэргической ».

    АТФ в организме обнаруживают всюду, где требуется энергия. Синтез различных соединений, работа мышц, движение жгутиков у простейших - везде энергию несет АТФ.

    «Зарядка» АТФ в клетке происходит так. К месту выделения энергии подходит аденозиндифосфорная кислота - АДФ (АТФ без 1 атома фосфора). Когда энергия может быть связана, АДФ соединяется с находящимся в большом количестве в клетке фосфором и в эту связь «замуровывает» энергию. Вот теперь уже необходимо транспортное обеспечение. Оно состоит из специальных ферментов - фосфофераз («фера» - несу), которые по первому требованию «хватают» АТФ и переносят ее к месту действия. Далее подходит очередь последнего, завершающего «агрегата электростанции» - понижающих трансформаторов. Они должны понизить напряжение и дать уже безопасный ток потребителю. Эту роль выполняют те же фосфоферазы. Передача энергии с АТФ на другое вещество осуществляется в несколько стадий. Сначала АТФ соединяется с этим веществом, затем происходит внутренняя перестановка атомов фосфора и, наконец, комплекс распадается - отделяется АДФ, а богатый энергией фосфор остается «висеть»» на новом веществе. Новое вещество оказывается гораздо неустойчивее из-за избыточности энергии и способно к различным реакциям.

    Более миллиарда лет прошло от появления одноклеточных до «изобретения» ядра клетки и рождения ряда других новшеств. Только тогда открылась дорога к первым многоклеточным существам, давшим начало трём царствам животных, растений и грибов. Европейские учёные выдвинули новое объяснение этого преображения, идущее вразрез с существовавшими до сих пор представлениями.

    Принято считать, что сначала от прокариот родились более совершенные ядерные клетки, полагавшиеся на старые энергетические механизмы, а уже позже новобранцы обзавелись митохондриями. Последним отводилась важная роль в дальнейшей эволюции эукариот, но не роль краеугольного камня, лежащего в самой её основе.

    «Мы показали, что первый вариант не сработает. Для развития сложности клетки ей необходимы митохондрии», — поясняет Мартин. «Наша гипотеза опровергает традиционную точку зрения, будто переход к эукариотическим клеткам требовал только лишь надлежащих мутаций», — вторит ему Лейн.

    Они развивались совместно, при этом эндосимбионт постепенно оттачивал одно умение — синтез АТФ . Внутренняя клетка уменьшалась в размерах и передавала часть своих второстепенных генов в ядро. Так митохондрии оставили у себя лишь ту часть исходной ДНК, что была им необходима для работы в качестве «живой электростанции».

    Митохондрии внутри клетки (флуоресцируют зелёным). На врезках: Мартин (слева) и Лейн. Детали нового исследования можно найти в статье в Nature и пресс-релизе UCL (фотографии Douglas Kline, molevol.de, nick-lane.net).

    Появление митохондрий в плане энергетики можно сравнить с изобретением ракеты после телеги, ведь ядерные клетки в среднем в тысячу раз больше по объёму, чем клетки без ядра.

    Последние, казалось бы, тоже могут расти в размерах и сложности устройства (тут есть единичные яркие примеры). Но на этом пути крохотных существ ждёт подвох: по мере геометрического роста быстро падает отношение площади поверхности к объёму.

    Между тем простые клетки генерируют энергию при помощи покрывающей их мембраны. Так что в крупной прокариотической клетке может быть полным-полно места для новых генов, но ей просто не хватит энергии для синтеза белков по этим «инструкциям».

    Простое увеличение складок внешней мембраны положение не особо спасает (хотя и такие клетки известны). С данным способом наращивания мощности увеличивается и число ошибок в работе энергетической системы. В клетке накапливаются нежелательные молекулы, способные её погубить.

    Число митохондрий (показаны красным) в одной клетке варьируется от единственного экземпляра (в основном в одноклеточных эукариотах) до двух тысяч (например, в клетках печени человека) (иллюстрация Odra Noel).

    Митохондрии — блестящее изобретение природы. Увеличивая их количество, можно наращивать энергетические возможности клетки без роста её внешней поверхности. При этом каждая митохондрия обладает ещё и встроенными механизмами контроля и ремонта.

    И ещё плюс инновации: митохондриальная ДНК невелика и очень экономна. Для её копирования не требуется много ресурсов. А вот бактериям, чтобы нарастить свои энергетические возможности, остаётся разве что создавать множество копий полного своего генома. Но такое развитие быстро приводит к энергетическому тупику.

    Сравнение энергетики разных клеток и их схемы. a) – средний прокариот (Escherichia ), b) – очень крупный прокариот (Thiomargarita ) и (c) средний эукариот (Euglena ).
    На диаграммах показаны (сверху вниз): мощность (ватты) на грамм клетки (d), мощность (фемтоватты) на один ген (e) и мощность (пиковатты) на гаплоидный геном (f) (иллюстрации Nick Lane, William Martin/Nature).

    Авторы работы посчитали, что средняя эукариотическая клетка теоретически может нести в 200 тысяч раз больше генов, чем средняя бактерия. Эукариот можно представить как библиотеку с большим числом полок — заполняй книгами вволю. Ну а более протяжённый геном — это основа для дальнейшего совершенствования строения клетки и её метаболизма, появления новых регуляторных цепей.

    Неспособные к фотосинтезу клетки (например, человека) получают энергию из пищи, которой служит или биомасса растений, созданная в результате фотосинтеза, или биомасса других живых существ, питающихся растениями, или останки любых живых организмов.

    Питательные вещества (белки, жиры и углеводы) преобразуются животной клеткой в ограниченный набор низкомолекулярных соединений - органических кислот, построенных из атомов углерода, которые с помощью специальных молекулярных механизмов окисляются до углекислоты и воды. При этом освобождается энергия, она аккумулируется в форме электрохимической разности потенциалов на мембранах и используется для синтеза АТФ или напрямую для совершения определенных видов работы.

    История изучения проблем преобразования энергии в животной клетке, как и история фотосинтеза, насчитывает более двух веков.

    У аэробных организмов окисление углеродных атомов органических кислот до углекислого газа и воды протекает с помощью кислорода и называется внутриклеточным дыханием, которое происходит в специализированных частицах - митохондриях. Трансформация энергии окисления осуществляется ферментами, расположенными в строгом порядке во внутренних мембранах митохондрий. Эти ферменты составляют так называемую дыхательную цепь и работают как генераторы, создавая разность электрохимических потенциалов на мембране, за счет которой синтезируется АТФ, подобно тому, как это происходит при фотосинтезе.

    Основная задача и дыхания и фотосинтеза — поддерживать соотношение АТФ/АДФ на определенном уровне, далеком от термодинамического равновесия, что и позволяет АТФ служить донором энергии, смещая равновесие тех реакций, в которых он участвует.

    Основными энергетическими станциями живых клеток служат митохондрии — внутриклеточные частицы размером 0,1-10μ, покрытые двумя мембранами. В митохондриях свободная энергия окисления продуктов питания превращается в свободную энергию АТФ. Когда АТФ соединяется с водой, при нормальных концентрациях реагирующих веществ, выделяется свободная энергия порядка 10 ккал/моль.

    В неорганической природе смесь водорода и кислорода носит название «гремучей»: достаточно небольшой искры, чтобы произошел взрыв - мгновенное образование воды с огромным выделением энергии в виде тепла. Задача, которую выполняют ферменты дыхательной цепи: произвести «взрыв» так, чтобы освобождающаяся энергия была запасена в форме, пригодной для синтеза АТФ. Что они и делают: упорядоченно переносят электроны от одного компонента к другому (в конечном счете, на кислород), постепенно понижая потенциал водорода и запасая энергию.

    О масштабах этой работы говорят следующие цифры. Митохондрии взрослого человека среднего роста и веса перекачивают через свои мембраны около 500 г ионов водорода в день, образуя мембранный потенциал. За это же время Н + -АТФ-синтаза производит около 40 кг АТФ из АДФ и фосфата, а использующие АТФ процессы гидролизуют всю массу АТФ назад в АДФ и фосфат.

    Исследования показали, что митохондриальная мембрана действует как трансформатор напряжения. Если передавать электроны субстрата от НАДН прямо к кислороду сквозь мембрану, возникнет разность потенциалов около 1 В. Но биологические мембраны - двухслойные фосфолипидные пленки не выдерживают такую разность - возникает пробой. Кроме того, для производства АТФ из АДФ, фосфата и воды требуется всего 0,25 В, значит, нужен трансформатор напряжения. И задолго до появления человека клетки «изобрели» такой молекулярный прибор. Он позволяет в четыре раза увеличить ток и за счет энергии каждого передаваемого от субстрата к кислороду электрона перенести через мембрану четыре протона благодаря строго согласованной последовательности химических реакций между молекулярными компонентами дыхательной цепи.

    Итак, два главных пути генерации и регенерации АТФ в живых клетках: окислительное фосфорилирование (дыхание) и фотофосфорилирование (поглощение света), — хотя и поддерживаются разными внешними источниками энергии, но оба зависят от работы цепочек каталитических ферментов, погруженных в мембраны: внутренние мембраны митохондрий, тилакоидные мембраны хлоропластов или плазматические мембраны некоторых бактерий.