Меню
Бесплатно
Главная  /  Всё про горло  /  Как происходит газообмен в легких. Строение лёгких. Газообмен в лёгких и тканях Углекислый газ в легких

Как происходит газообмен в легких. Строение лёгких. Газообмен в лёгких и тканях Углекислый газ в легких

Напряжение углекислого газа в венозной крови, притекающей к легким, выше, а напряжение кислорода ниже, чем их давление в альвеолярном воздухе. Поэтому при протекании по капиллярам легких кровь отдает углекислый газ и поглощает кислород. Обмену газов между кровью и альвеолярным воздухом способствует огромное количество альвеол, достигающее у человека 750 млн., и большая их поверхность, составляющая на вдохе 100 м2, а на выдохе - 30 м2. Мембрана, отделяющая кровь от альвеолярного воздуха, имеет толщину всего лишь 0,004 мм и состоит из двух слоев клеток - клеток эндотелия капилляров и клеток эпителия альвеол, свободно пропускающих газы.

Газообмен в легких осуществляется в результате диффузии углекислого газа из крови в альвеолярный воздух и кислорода из альвеолярного воздуха в кровь. Диффузия газов происходит в силу разности между парциальным давлением этих газов в альвеолярном воздухе и напряжением их в крови. Доказательства этого получены при измерениях парциального давления кислорода и углекислого газа в альвеолярном воздухе и напряжения этих газов в венозной и артериальной крови.

Для определения напряжения газов в крови применяется микротонометр Крога (рис. 59 ), представляющий собой видоизменение прибора, предложенного К. А. Тимирязевым. Микротонометр включают между центральным и периферическим концом кровеносного сосуда-артерии или вены. Кровь из кровеносного сосуда поступает через трубку А в ампулу микротонометра В, где находится маленький пузырек воздуха, а оттуда через трубку С обратно в кровеносный сосуд (рис. 59 ).

Так как объем пузырька воздуха ничтожно мал по сравнению с массой протекающей крови, то для установления газового равновесия между пузырьком воздуха и кровью требуется переход в пузырек столь небольшого количества газов, что их напряжение в крови не изменяется. Пузырек время от времени с помощью поршня D втягивается в капилляр Е, где измеряется его объем. После того как установится динамическое равновесие газов объем пузырька станет постоянным, его извлекают и определяют содержание в нем газов. Парциальные давления газов вычисляются из их процентных соотношений. Так пузырьке воздуха газы находились в равновесии с газами крови, то ясно, что, слив содержание газов в пузырьке, можно тем самым измерить напряжение и в крови.

Рис. 59. Микротонометр Крога (объяснения в тексте).

Установлено, что напряжение кислорода в артериальной крови равно 100 мм рт. ст., а углекислого газа - 40 мм; в венозной же крови напряжение кислорода равняется 40 мм, а углекислого газа - 46 мм рт. ст.

Из этих цифр следует, что разность между напряжением газов в венозной крови и их давлением в альвеолярном воздухе составляет для кислорода приблизительно 110-40=70 мм, а для углекислого газа - 46-40 = 6 мм рт. ст.

За короткое время пребывания крови в лёгочных капиллярах напряжение газов в крови почти сравнивается с их парциальным давлением в альвеолярном воздухе. Это видно из того, что напряжение углекислого газа в артериальной крови почти такое же, в альвеолярном воздухе, а напряжение кислорода на 2-10 мм ниже.

Экспериментально установлено, что при разнице напряжений всего в 1 мм рт. ст. у здорового взрослого человека, находящегося в покое, в кровь может поступить 25-60 мл кислорода в минуту. Так как средняя величина потребления кислорода у человека в покое составляет примерно 250-300 мл в минуту, то, следовательно, разность давлений в 70 мм более чем достаточна для того, чтобы обеспечить поступление в кровь необходимого количества кислорода. При такой разности давления кислорода в альвеолярном воздухе и напряжения этого газа в венозной крови может быть обеспечено и значительное увеличение поступления кислорода в кровь, необходимое, например, при физической работе или спортивных упражнениях, когда значительно увеличивается минутный объем крови, выбрасываемой сердцем, и ускоряется ток крови через легкие.

Так как скорость диффузии углекислоты из крови в 25 раз больше, чем кислорода, то и углекислый газ успевает выделиться из крови в необходимых количествах за счет существующей разности между напряжением СО2 в венозной крови и давлением его в альвеолярном воздухе.

. Холден обратил внимание на то, что вентиляция разных участков легких неодинакова. Известно, что наиболее растяжима наружная зона легочной ткани, простирающаяся на 25-30 мм в глубь легкого; менее растяжима промежуточная зона - легочная ткань, охватывающая разветвления бронхов и кровеносных сосудов. Наименее растяжима внутренняя зона, расположенная в области корня легкого, среди крупных бронхов, сосудов и соединительной ткани. В состоянии покоя у человека в акте дыхания учавствует преимущественно наиболее растяжимая наружная зона легочной ткани.

Кислород переходит из альвеол в кровь легочных капилляров, а углекислота - в обратном направлении вследствие простого физического процесса диффузии; каждый из этих газов переходит из области более высокой его концентрации в область более низкой концентрации. Чрезвычайно тонкий альвеолярный эпителий не оказывает существенного сопротивления диффузии газов, и, поскольку в альвеолах концентрация кислорода обычно бывает выше, чем в крови, притекающий к легким по легочной артерии кислород диффундирует из альвеол в капилляры. Напротив, концентрация углекислоты в крови легочной артерии в нормальных условиях выше, чем в легочных альвеолах, и поэтому углекислота диффундирует из легочных капилляров в альвеолы. В отличие от клеток, выстилающих кишечник, которые могут всасывать то или иное вещество из просвета кишки и передавать его в кровь, где концентрация его может быть выше, альвеолярный эпителий не способен переносить кислород и углекислоту против градиента концентрации.

Так как клетки альвеол не могут заставить кислород переходить в кровь, когда концентрация его в альвеолах падает ниже определенного уровня, проходящая через легкие кровь в этом случае не может получить достаточное для организма количество кислорода и появляются симптомы «горной болезни» - тошнота, головная боль и галлюцинации. Горная болезнь начинает возникать на высоте около 4500 ж, а у некоторых людей и на меньших высотах. Человеческий организм может приспособиться к жизни на больших высотах путем увеличения числа эритроцитов в крови; однако люди не могут жить значительно выше 6000 м без дополнительного источника кислорода. На высоте примерно 11 км давление настолько низко, что даже при дыхании чистым кислородом человек не может удовлетворить свою потребность в этом газе. Поэтому самолеты, летающие на таких высотах, должны быть герметичными, и приходится снабжать их насосами для поддержания в кабине давления воздуха, равного давлению на уровне моря, т. е. 760 мм рт. ст.

В тканях всего тела, где происходит внутреннее дыхание, кислород переходит из капилляров в клетки, а углекислота - из клеток в капилляры путем диффузии. Вследствие непрерывного расщепления глюкозы и других веществ в клетках все время образуется углекислота и используется кислород. Поэтому концентрация кислорода в клетках всегда ниже, а концентрация углекислоты - выше, чем в капиллярах.

На всем своем пути от легких через кровь к тканям кислород движется из области с более высокой его концентрацией в область более низкой концентрации и, наконец, используется в клетках; углекислота движется из клеток, где она образуется, через кровь к легким и далее наружу - всегда по направлению к области с более низкой концентрацией.

Одной из важнейших функций организма является дыхание. Во время него происходит газообмен в тканях и легких, при котором поддерживается окислительно-восстановительный баланс. Дыхание - это сложный процесс, обеспечивающий кислородом ткани, использование его клетками при метаболизме, а также удаление негативных газов.

Этапы дыхания

Чтобы понять, как происходит газообмен в тканях и легких, необходимо знать этапы дыхания. Всего их три:

  1. Внешнее дыхание, при котором происходит газообмен между клетками организма и внешней атмосферой. Внешний вариант делится на обмен газов между внешнем и внутренним воздухом, а также на обмен газами между кровью легких и альвеолярным воздухом.
  2. Транспортировка газов. Газ в организме находятся в свободном состоянии, а остальная часть переносится в связанном состоянии гемоглобином. Газообмен в тканях и легких происходит именно через гемоглобин, в котором содержится до двадцати процентов углекислого газа.
  3. Тканевое дыхание (внутреннее). Данный вид можно разделить на обмен газами между кровью и тканями, и на усвоение клетками кислорода и выделение различных продуктов жизнедеятельности (метана, углекислого и т. д.).

В процессах дыхания принимают участие не только легкие и дыхательные пути, но и мышцы грудной клетки, а также головной и спинной мозг.

Процесс газообмена

Во время насыщения воздухом легких и при выдохах происходит его изменение на химическом уровне.

В выдыхаемом воздухе при температуре ноль градусов и при давлении 765 мм рт. ст., содержится около шестнадцати процентов кислорода, четыре процента углекислого газа, а остальное - азот. При температуре 37 о С воздух в альвеолах насыщается парами, при этом процессе изменяется давление, падая до пятидесяти миллиметров ртутного столба. При этом давление газов в альвеолярном воздухе составляет чуть больше семисот мм рт. ст. В этом воздухе содержится пятнадцать процентов кислорода, шесть - углекислого газа, а остальное - это азот и прочие примеси.

Для физиологии газообмена в легких и тканях имеет большое значение разница парциального давления и между углекислым газом и кислородом. Парциальное давление кислорода составляет около 105 мм рт. ст., а в венозной крови оно в три раза меньше. Из-за этой разницы кислород поступает из альвеолярного воздуха в венозную кровь. Таким образом, происходит ее насыщение и превращение в артериальную.

Парциальное давление СО 2 в венозной крови менее пятидесяти миллиметров ртутного столба, а в альвеолярном воздухе - сорок. Из-за этой небольшой разницы углекислый газ переходит из венозной крови в альвеолярную и выводится организмом при выдохе.

Газообмен в тканях и легких осуществляется при помощи капиллярной сетки сосудов. Через их стенки происходит насыщение кислородом клеток, а также удаляется углекислый газ. Этот процесс наблюдается только при разнице в давлении: в клетках и тканях кислородное доходит до нуля, а давление углекислого газа составляет около шестидесяти мм рт. ст. Это позволяет проходить СО 2 из клеток в сосуды, превращая кровь в венозную.

Транспорт газов

Во время внешнего дыхания в легких происходит процесс превращения венозной крови в артериальную путем соединения кислорода с гемоглобином. В результате такой реакции образуется оксигемоглобин. При достижении клеток организма этот элемент распадается. В соединении с бикарбонатами, которые образуются в крови, углекислота поступает в кровь. В результате образуются соли, но при этом процессе реакция ее остается неизменной.

Достигнув легких, бикарбонаты распадаются, отдавая оксигемоглобину щелочной радикал. После этого бикарбонаты превращаются в углекислый газ и водяные пары. Все эти вещества распада выводятся из организма во время выдоха. Механизм газообмена в легких и тканях производится путем превращения углекислого газа и кислорода в соли. Именно в таком состоянии эти вещества транспортируются кровью.

Роль легких

Основная функция легких - это обеспечение обмена газами между воздухом и кровью. Этот процесс возможен из-за огромной площади органа: у взрослого человека она составляет 90 м 2 и почти такой же площадью сосудов МКК, где происходит насыщение венозной крови кислородом и отдача углекислого газа.

Во время выдоха из организма выводится более двухсот различных веществ. Это не только углекислый газ, но и ацетон, метан, эфиры и спирты, пары воды и т. д.

Помимо кондиционирования, функция легких заключается в защите организма от инфекции. При вдохе, все патогенные вещества оседают на стенках дыхательной системы, в том числе альвеол. В них содержатся макрофаги, захватывающие микробов и уничтожающие их.

Макрофаги вырабатывают хемотаксические вещества, которые привлекают гранулоциты: они выходят из капилляр и принимают прямое участие в фагоцитозе. После поглощения микроорганизмов, макрофаги могут переходить в лимфатическую систему, где может происходить воспаление. Патологические агенты заставляют вырабатывать лейкоцитарные антитела.

Функция метаболизма

Особенности функций легких включает метаболическое свойство. Во время обменных процессов происходит образование фосфолипидов и белков, их синтез. Также в легких происходит синтез гепарина. Дыхательный орган участвует в образовании и разрушении биологически активных веществ.

Общая схема дыхания

Особенность строения дыхательной системы позволяет воздушным массам легко проходить по дыхательным путям и попадать в легкие, где происходят обменные процессы.

Воздух попадает в дыхательную систему через носовой ход, затем проходит по ротоглотке в трахею, откуда масса доходит до бронхов. После прохождения через бронхиальное дерево воздух попадает в легкие, где и происходит обмен между разными типами воздуха. Во время этого процесса кислород поглощается клетками крови, превращая венозную кровь в артериальную и доставляя ее к сердцу, а оттуда она разносится по всему организму.

Анатомия дыхательной системы

Строение дыхательной системы выделяет воздухоносные пути и собственно дыхательную часть. Последняя представлена легкими, где происходит газообмен между воздушными массами и кровью.

Воздух проходит в дыхательную часть по воздухоносным путям, представленными полостью носа, гортанью, трахеей и бронхами.

Воздухоносная часть

Начинается дыхательная система носовой полостью. Она разделена на две части хрящевой перегородкой. Спереди каналы носа сообщаются с атмосферой, а сзади - с носоглоткой.

Из носа воздух попадает в ротовую, а затем в гортанную часть глотки. Здесь происходит скрещивание дыхательной и пищеварительной систем. При патологии носовых ходов, дыхание может осуществляться через рот. В этом случае воздух также будет попадать в глотку, а затем в гортань. Она располагается на уровне шестого шейного позвонка, образуя возвышение. Эта часть дыхательной системы может смещаться во время разговора.

Через верхнее отверстие гортань сообщается с глоткой, а снизу орган переходит в трахею. Она является продолжением гортани и состоит из двадцати неполных хрящевых колец. На уровне пятого грудного позвоночного сегмента трахея разделяется на пару бронхов. Они направляются к легким. Бронхи разделены на части, образуя перевернутое дерево, которое как бы проросло ветвями внутрь легких.

Дыхательную систему завершают легкие. Они расположены в грудной полости по обеим сторонам от сердца. Легкие делятся на доли, каждая из которых разделяется на сегменты. Они имеют форму неправильных конусов.

Сегменты легких разделяются на множество частей - бронхиол, на стенках которых располагаются альвеолы. Весь этот комплекс получил название альвеолярный. Именно в нем происходит газообмен.

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Легкие являются наиболее объемным органом нашего организма. Структура и механизм работы легких достаточно интересны. Каждый вдох наполняет наш организм кислородом, выдох устраняет из организма углекислый газ и некоторые токсические вещества. Дышим мы постоянно – и во сне и во время бодрствования. Процесс вдоха и выдоха – это достаточно сложные действия, которые осуществляются несколькими системами и органами при одновременном взаимодействии.

Несколько удивительных фактов о легких

Знаете ли Вы, что в легких содержится 700 миллионов альвеол (мешотчатых окончаний в которых происходит газообмен )?
Интересен тот факт, что площадь внутренней поверхности альвеол изменяется более чем в 3 раза - при вдохе более 120 квадратных метров, против 40 метров квадратных при выдохе.
Площадь альвеол более чем в 50 раз превышает площадь кожных покровов.

Анатомия легкого

Условно легкое можно разделить на 3 отдела:
1. Воздухоносный отдел (бронхиальное дерево ) – по которому воздух, как по системе каналов достигает альвеол.
2. Отдел, в котором происходит газообмен – система альвеол.
3. Отдельного внимания заслуживает кровеносная система легкого.

Для боле подробного изучения строения легкого рассмотрим каждую из представленных систем отдельно.

Бронхиальное дерево – как воздухоносная система

Представлено ветвлениями бронхов, визуально напоминающих гофрированные трубки. По мере ветвления бронхиального дерева просвет бронхов сужается, но они становятся все более многочисленными. Конечные веточки бронхов, называемые бронхиолами, имеют просвет размером менее 1 миллиметра, но их численность составляет несколько тысяч.

Строение стенки бронхов

Стенка бронхов состоит из 3-х слоев:
1. Внутренний слой слизистый . Выстлан цилиндрическим мерцательным эпителием. Особенностью данного слизистого слоя является наличие на поверхности мерцательных щетинок, которые создают однонаправленное движение слизи на поверхности, способствуют механическому выведению пылинок или иных микроскопических частиц во внешнюю среду. Поверхность слизистой всегда увлажнена, содержит антитела и иммунные клетки.

2. Средняя оболочка мышечно-хрящевая . Данная оболочка выполняет роль механического каркаса. Хрящевые колечки создают вид гофрированного шланга. Хрящевая ткань бронхов препятствует спаданию просвета бронхов при перепадах давления воздуха в легких. Так же хрящевые колечки, связанные гибкой соединительной тканью обеспечивают мобильность и гибкость бронхиального дерева. По мере снижения калибра бронхов в средней оболочке начинает преобладать мышечный компонент. При помощи гладкой мышечной ткани у легких появляется возможность регулировать потоки воздуха, ограничивать распространение инфекции и инородных тел .

3. Наружная оболочка адвентиция . Эта оболочка обеспечивает механическую связь бронхиального дерева с окружающими органами и тканями. Состоит из коллагеновой соединительной ткани.

Ветвления бронхов весьма напоминают вид опрокинутого дерева. Отсюда и название – бронхиальное древо. Началом воздухоносных путей бронхиального древа, можно назвать просвет трахеи. Трахея в своей нижней части раздваивается на два главных бронха, которые направляют воздушные потоки каждый в свое легкое (правое и левое ). Внутри легкого ветвление продолжается на долевые бронхи (3 в левом легком и 2 в правом ), сегментарные и т.д. Воздухоносная система бронхиального дерева оканчивается терминальными бронхиолами, которые дают начало дыхательной части легкого (в ней происходит газообмен между кровью и воздухом легкого ).

Дыхательная часть легкого

Ветвление воздухоносной системы легкого достигает уровня бронхиол. Каждая бронхиола, диаметр которой не превышает 1 мм, дает начало 13 - 16 дыхательным бронхиолам, которые в свою очередь дают начало дыхательным ходам, оканчивающимися альвеолами (гроздевидные мешочки ), в которых происходит основной газообмен.

Строение легочной альвеолы

Легочная альвеола выглядит как гроздь винограда. Состоит из дыхательной бронхиолы, дыхательных ходов и воздушных мешочков. Выстлана внутренняя поверхность альвеол однослойным плоским эпителием тесно связанным с эндотелием капилляров, окутывающих альвеолу как сеть. Именно благодаря тому, что просвет альвеол отделен от просвета капилляра очень тонкой прослойкой, возможен активный газообмен, между легочной и кровеносной системами.

Внутренняя поверхность альвеол покрыта специальным органическим веществом – сурфактантом .
Данное вещество содержит органические составляющие, препятствующие спаданию альвеол при выдохе, в нем находятся антитела, иммунные клетки, обеспечивающие защитные функции. Так же сурфактант препятствует проникновению в просвет альвеол крови.

Расположение легкого в грудной клетке

Легкое лишь в месте соединения с главными бронхами механически фиксировано к окружающим тканям. Остальная его поверхность не имеет механической связи с окружающими органами.


Как же тогда происходит расправление легкого при дыхании?

Дело в том, что легкое расположено в специальной полости грудной клетки называемой плевральной . Эта полость выстлана однослойной слизистой тканью – плеврой . Такая же ткань выстилает и саму внешнюю поверхность легкого. Данные листки слизистых соприкасаются между собой, сохраняя возможность скольжения. Благодаря секретируемой смазке, возможно при вдохе и выдохе скольжение наружной поверхности легкого по внутренней поверхности грудной клетки и диафрагмы.

Мышцы, участвующие в акте дыхания

На самом деле вдох и выдох достаточно сложный и многоуровневый процесс. Для его рассмотрения необходимо ознакомиться с опорно-мышечным аппаратом, участвующем в процессе внешнего дыхания.

Мышцы, участвующие во внешнем дыхании
Диафрагма – это плоская мышца, натянутая как батут по краю реберной дуги. Диафрагма отделяет грудную полость от брюшной. Основная функция диафрагмы – активное дыхание.
Межреберные мышцы – представлены несколькими слоями мышц, посредством которых верхние и нижние края соседних ребер соединяются. Как правило, данные мышцы участвуют в глубоком вдохе и затяжном выдохе.

Механика дыхания

При вдохе происходит ряд одновременных движений, которые приводят к активному нагнетанию воздуха в воздухоносные пути.
При сокращении диафрагмы она уплощается. В плевральной полости создается отрицательное давление благодаря вакууму. Отрицательное давление в плевральной полости передается тканям легкого, которое послушно расширяется, создавая отрицательное давление в дыхательных и воздухоносных отделах. В результате атмосферный воздух устремляется в область пониженного давления – в легкие. Пройдя воздухоносные пути, свежий воздух смешивается с остаточной порцией воздуха легкого (воздух, оставшийся в просвете альвеол и дыхательных путей после выдоха ). В результате чего, концентрация кислорода в воздухе альвеол повышается, а концентрация углекислого газа понижается.

При глубоком вдохе происходит расслабление определенной части косых межреберных мышц и сокращении перпендикулярно расположенной порции мышц, что увеличивает межреберные расстояния, повышая объем грудной клетки. Потому появляется возможность на 20 - 30% увеличить объем вдыхаемого воздуха.

Выдох – в основном это пассивный процесс. Спокойный выдох не требует напряжения каких-либо мышц – требуется лишь расслабление диафрагмы. Легкое, благодаря своей эластичности и упругости само вытесняет основную часть воздуха. Лишь при форсированном выдохе могут напрягаться мышцы живота, межреберные мышцы. К примеру – при чихании или при кашле происходит сокращение мышц брюшного пресса, повышается внутрибрюшное давление, которое через диафрагму передается легочной ткани. Определенная часть межреберных мышц при сокращении приводит к уменьшению межреберных промежутков, что уменьшает объем грудной клетки, приводя к усиленному выдоху.

Кровеносная система легкого

Сосуды легкого берут свое начало от правого желудочка сердца , из которого кровь поступает в легочный ствол. По нему кровь распределяется в правую и левую легочные артерии соответствующих легких. В тканях легкого происходят ветвления сосудов параллельно бронхам. Причем артерии и вены идут параллельно бронху в непосредственной близости. На уровне дыхательной части легкого происходит ветвление артериол на капилляры, которые окутывают альвеолы густой сосудистой сетью. В этой сети и происходит активный газообмен. В результате прохождения крови на уровне дыхательной части легкого происходит обогащение эритроцитов кислородом. Покидая альвеолярные структуры, кровь продолжает свое движение, но уже по направлению к сердцу – к его левым отделам.

Как происходит газообмен в легких?

Поступившая при вдохе порция воздуха изменяет газовый состав полости альвеол. Повышается уровень кислорода, понижается уровень углекислого газа.
Альвеолы окутаны достаточно густой сетью мельчайших сосудов – капилляров, которые, пропуская с медленной скоростью через себя эритроциты, способствуют активному газообмену. Нагруженные гемоглобином эритроциты, проходя через капиллярную сеть альвеол, присоединяют к гемоглобину кислород.

Попутно происходит выведение из состава крови углекислого газа – он покидает кровь и переходит в полость воздухоносных путей. Узнать подробнее о том, как на молекулярном уровне происходит процесс газообмена в эритроцитах, Вы можете в статье: «Эритроциты – как они работают? ».
Посредством легких при дыхании происходит непрерывный газообмен между атмосферным воздухом и кровью. Задача легких обеспечить организм, необходимым количеством кислорода, попутно выводя образующийся в тканях организма и транспортируемый к легким кровью углекислый газ.

Как управляется процесс дыхания?

Дыхание – это полуавтоматический процесс. Мы в состоянии на определенное время задержать наше дыхание или участить дыхание произвольно. Однако в течение дня частота и глубина дыхания определяется в основном автоматически центральной нервной системой. На уровне продолговатого мозга имеются специальные центры регулирующие частоту и глубину дыхания в зависимости от концентрации в крови углекислого газа. Данный центр в головном мозге посредством нервных стволов связан с диафрагмой и обеспечивает ритмичное ее сокращение при акте дыхания. При повреждении центра регуляции дыхания или нервов связывающих этот центр с диафрагмой поддержание внешнего дыхания возможно, лишь при помощи искусственной вентиляции легких.

На самом деле функций у легких намного больше: поддержания кислотно-основного баланса крови (поддержание ph крови в пределах 7,35- 7,47), иммунная защита, очистка крови от микротромбов, регуляция коагуляции крови, выведение токсических летучих веществ. Однако целью данной статьи было освещение дыхательной функции легкого, основных механизмов приводящих к внешнему дыханию.