Меню
Бесплатно
Главная  /  Кашель у взрослых  /  Общие представления о действии гормонов. Регулирование жизненных функций организма

Общие представления о действии гормонов. Регулирование жизненных функций организма

Действие гормонов основано на стимуляции или угнетении каталитической функции некоторых ферментов в клетках органов-мишеней. Это действие может достигаться путем активации или ингибирования уже имеющихся ферментов. Причем важная роль принадлежит циклическому аденозинмонофосфату (цАМФ), который является здесь вторичным посредником (роль первичного

посредника выполняет сам гормон). Возможно также увеличение концентрации ферментов за счет ускорения их биосинтеза путем активации генов.

Механизм действия гормонов пептидной и стероидной природы различен. Амины и пептидные гормоны не проникают внутрь клетки, а присоединяются на ее поверхности к специфическим рецепторам в клеточной мембране. Рецептор связан с ферментом аденилатциклазой. Комплекс гормона с рецептором активирует аденилатциклазу, которая расщепляет АТФ с образованием цАМФ. Действие цАМФ реализуется через сложную цепь реакций, ведущую к активации определенных ферментов путем их фосфорилирования, они и осуществляют конечный эффект гормона (рис. 2.3).


Рис. 2.4 Механизм действия стероидных гормонов

I - гормон проникает в клетку и связывается с рецептором в цитоплазме; II - рецептор транспортирует гормон в ядро;

III - гормон обратимо взаимодействует с ДНК хромосом; IV - гормон активирует ген, на котором образуется матричная (информационная) РНК (мРНК); V- мРНК выходит из ядра и инициирует синтез белка (обычно фермента) на рибосомах; фермент реализует конечный гормональный эффект; 1 - клеточная мембрана, 2 - гормон, 3 - рецептор, 4 - ядерная мембрана, 5 - ДНК, 6 - мРНК, 7 - рибосома, 8 - синтез белка (фермента).

Стероидные гормоны, а также Тз и Т 4 (тироксин и трийодтиронин) растворимы в жирах, поэтому они проникают через клеточную мембрану. Гормон связывается с рецептором в цитоплазме. Образовавшийся гормон-рецепторный комплекс транспортируется в ядро клетки, где вступает в обратимое взаимодействие с ДНК и индуцирует синтез белка (фермента) или нескольких белков. Путем включения специфических генов на определенном участке ДНК одной из хромосом синтезируется матричная (информационная) РНК (мРНК), которая переходит из ядра в цитоплазму, присоединяется к рибосомам и индуцирует здесь синтез белка (рис. 2.4).

В отличие от пептидов, активирующих ферменты, стероидные гормоны вызывают синтез новых ферментных молекул. В связи с этим эффекты стероидных гормонов проявляются намного медленнее, чем действие пептидных гормонов, но длятся обычно дольше.

2.2.5. Классификация гормонов

На основании функциональных критериев различают три группы гормонов: 1) гормоны, которые оказывают влияние непосредственно на орган-мишень; эти гормоны называются эффекторнымщ 2) гормоны, основной функцией которых является регуляция синтеза и выделения эффекторных гормонов;

эти гормоны называют тропнымщ 3) гормоны, вырабатываемые нервными клетками и регулирующие синтез и выделение гормонов аденогипофиза; эти гормоны называются рилизинг-гормонами, или либеринами, если они стимулируют эти процессы, или ингибирующими гормонами, статинами, если они обладают противоположным действием. Тесная связь между ЦНС и эндокринной системой осуществляется в основном с помощью этих гормонов.

В сложной системе гормональной регуляции организма различают более или менее длинные цепи регуляции. Основная линия взаимодействий: ЦНС гипоталамус → гипофиз → периферические эндокринные железы. Все элементы этой системы объединены обратными связями. Функция части эндокринных желез не находится под регулирующим влиянием гормонов аденогипофиза (например, паращитовидные железы, поджелудочная железа и др.).

Изменение транспорта воды и ионов в почечных канальцах наступает под влиянием нервных стимулов или гормонов. Сущность многообразных эффектов этих веществ может быть сведена к двум основным способам внутриклеточных реакций. Примером одной является действие альдостерона, другой — АДГ. Альдостерон после введения в кровь увеличивает реабсорбцию натрия после довольно продолжительного латентного периода, равного 45-120 мин.

Этот гормон через перитубулярную плазматическую мембрану проникает в клетку и в цитоплазме связывается со стерео специфичным для него белком. Этот процесс занимает 30-45 мин, после чего комплекс альдостерон - рецептор переносится в ядро и взаимодействует с акцепторными для него участками ядерного хроматина. Это вызывает транскрипцию гена - активация участка ДНК способствует синтезу РНК-посредника, которая переходит из ядра в цитоплазму и стимулирует в рибосомах синтез нового белка. Его относительная молекулярная масса около 12 000. Существует ряд гипотез о точке приложения в клетке этого белка и механизме, с помощью которого он увеличивает транспорт натрия.

Согласно одной из гипотез, этот белок является компонентом переносчика или пермеазы, облегчая проникновение натрия в клетку через апикальную мембрану. Другая гипотеза придает ведущее значение активации насоса - Na, К-АТФ-азы. Наконец, по метаболической гипотезе этот белок служит компонентом системы энергетического обмена клетки, он усиливает митохондриальный синтез АТФ. Высказывают также мысль о возможности действия этого белка не на один, а на два компонента системы - проникновение и активное выведение натрия из клетки, что автоматически усиливает энерготраты и приводит к возрастанию образования АТФ. Довольно глубокое изучение механизма действия альдостерона имеет существенное значение для клиники - становится понятным способ действия, причина длительного латентного периода и сущность влияния диуретиков - опиронолактонов - конкурентных антагонистов альдостерона (верошпирон, альдактон). Эти вещества угнетают связывание альдостерона с рецепторными белками, находящимися в цитоплазме и ядре.

Установлено, что основным местом действия альдостерона в нефроне являются самые конечные отделы дистального извитого канальца и начальные отделы собирательных трубок. В этих же клетках действуют и спиронолактоны. Приведенные выше данные о механизме клеточного влияния альдостерона касаются только его воздействия на реабсорбцию натрия; вызываемое гормоном усиление секреции калия не опосредовано через генетический аппарат клетки.

Иной механизм внутриклеточного действия характерен для АДГ.

На наружной поверхности базальной плазматической мембраны клеток собирательных трубок локализован рецепторный белок для АДГ. Составным элементом мембранного рецептора является фермент аденилатциклаза, которая при активации рецептора катализирует уже с внутренней стороны мембраны образование из АТФ цАМФ 3´, 5´-АМФ. Точный механизм всех последующих этапов действия этого вещества в клетке собирательной трубки пока не ясен.

Известно, что 3",5"-АМФ активирует перенос макроэргического фосфата с помощью фермента протеинофосфазы на серии или треонин протеинфосфотазы. Этот фермент находится с внутренней стороны апикальной мембраны клетки. Эти реакции в конечном счете вызывают увеличение проницаемости канальцевой стенки для воды. 3´,5"-АМФ, индуцировавший всю последовательность внутриклеточных реакций, превращается в физиологически неактивный 5"-АМФ с помощью фермента фосфодиэстеразы циклического нуклеотида.

Существенно, что ингибитором этого фермента является весьма часто используемое в клинике вещество теофиллин. Подобная последовательность внутриклеточных реакций характерна для действия на клетку нефрона катехоламинов, ряда пептидных гормонов, например ПГ. Различие заключается в специфике рецептора, находящегося с наружной стороны базальной плазматической мембраны, и ином конечном звене внутриклеточных реакций, инициируемых с помощью 3",5"-АМФ.

Пути реабсорбции воды пока остаются предметом споров. Согласно одной из гипотез, конечным этапом действия 3",5"-АМФ является увеличение проницаемости для воды апикальной плазматической мембраны, и вода, пересекая клетку, по осмотическому градиенту движется в межклеточную жидкость и кровь. По другой гипотезе под влиянием АДГ при участии 3",5"-АМФ происходит секреция гиалуронидазы. А. Г. Гинецинский (1963) считал, что этот фермент, деполимеризуя гликозаминогликаны межклеточного вещества, увеличивает проницаемость мембраны для воды.

Описанные выше подходы к ряду патологических состояний позволили выявить их существенное значение для понимания патогенеза нефрогенного несахарного диабета, нарушения концентрационной способности почки при ХПН и др. Так, при одной из форм нефрогенного несахарного диабета обнаружено уменьшение секреции гиалуронидазы и образования 3", 5"-АМФ под влиянием АДГ.

Клиническая нефрология

под ред. Е.М. Тареева

4 основные системы регуляции метаболизма: Центральная нервная система (за счет передачи сигналов посредством нервных импульсов и нейромедиаторов); Эндокринная система (с помощью гормонов, которые синтезируются в железах и транспортируются к клеткам-мишеням (на рис. А); Паракринная и аутокринная системы (при участии сигнальных молекул, секретируемых из клеток в межклеточное пространство — эйкозаноидов, гистаминов, гормонов ЖКТ, цитокинов) (на рис. Б и В); Иммунная система (посредством специфических белков – антител, Т-рецепторов, белков комплекса гистосовместимости.) Все уровни регуляции интегрированы и действуют как единое целое.

Эндокринная система регулирует обмен веществ посредством гормонов. Гормоны (др. -греч. ὁρμάω - возбуждаю, побуждаю) — — биологически активные органические соединения, которые вырабатываются в незначительных количествах в железах внутренней секреции, осуществляют гуморальную регуляцию обмена веществ и имеют различную химическую структуру.

Классическим гормонам присущ ряд признаков: Дистантность действия – синтез в железах внутренней секреции, а регуляция отдаленных тканей Избирательность действия Строгая специфичность действия Кратковременность действия Действуют в очень низких концентрациях, под контролем ЦНС и регуляция их действия осуществляется в большинстве случаев по типу обратной связи Действуют опосредованно через белковые рецепторы и ферментативные системы

Организация нервно-гормональной регуляции Существует строгая иерархия или соподчиненность гормонов. Поддержание уровня гормонов в организме в большинстве случаев обеспечивает механизм отрицательной обратной связи.

Регуляция уровня гормонов в организме Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус. Существуют эндокринные железы для которых отсутствует регуляция тропными гормонами – паращитовидная железа, мозговое вещество надпочечников, ренин-альдостероновая система и поджелудочная железа. Они контролируются нервными влияниями или концентрацией определенных веществ в крови.

Классификация гормонов по биологическим функциям; по механизму действия; по химическому строению; различают 4 группы: 1. Белково-пептидные 2. Гормоны-производные аминокислот 3. Гормоны стероидной природы 4. Эйкозаноиды

1. Белково — пептидные гормоны Гормоны гипоталамуса; гормоны гипофиза; гормоны поджелудочной железы — инсулин, глюкагон; гормоны щитовидной и паращитовидной желез – соответственно кальцитонин и паратгормон. Вырабатываются в основном путем прицельного протеолиза. У гормонов короткое время жизни, имеют от 3 до 250 АМК остатков.

Главный анаболический гормон – инсулин, главный катаболический гормон — глюкагон

Некоторые представители белково — пептидных гормонов: тиролиберина (пироглу-гис-про- NN НН 22), инсулина и соматостатина.

2. Гормоны — производные аминокислот Являются производными аминокислоты — тирозина. К ним относятся гормоны щитовидной железы — трийодтиронин ((II 33) и тироксин (II 44), а а также — адреналин и норадреналин – катехоламины.

3. Гормоны стероидной природы Синтезируются из холестерина (на рис.) Гормоны коркового вещества надпочечников – кортикостероиды (кортизол, кортикостерон) Гормоны коркового вещества надпочечников – минералокортикоиды (андостерон) Половые гормоны: андрогены (19 «С») и эстрогены (18 «С»)

Эйкозаноиды Предшественником всех эйкозаноидов является арахидоновая кислота. Они делятся на 3 группы – простагландины, лейкотриены, тромбоксаны. Эйказоноиды — медиаторы (локальные гормоны) - широко распространенная группа сигнальных веществ, которые образуются почти во всех клетках организма и и имеют небольшую дальность действия. Этим они отличаются от классических гормонов, синтезирующихся в специальных клетках желез внутренней секреции. .

Характеристика разных групп эйказоноидов Простагландины (Pg)- синтезируются практически во всех клетках, кроме эритроцитов и лимфоцитов. Выделяют такие типы простагландинов A, B, C, D, E, F. Функции простагландинов сводятся к изменению тонуса гладких мышц бронхов, мочеполовой и сосудистой систем, желудочно-кишечного тракта, при этом направленность изменений различна в зависимости от типа простагландинов и условий. Они также влияют на температуру тела. Простациклины являются подвидом простагландинов (Pg I), но дополнительно обладают особой функцией- ингибируют агрегацию тромбоцитов и обусловливают вазодилатацию. Особенно активно синтезируются в эндотелии сосудов миокарда, матки, слизистой желудка. .

Тромбоксаны и лейкотриены Тромбоксаны (Tx) образуются в тромбоцитах, стимулируют их агрегацию и вызывают сужение мелких сосудов. Лейкотриены (Lt) активно синтезируются в лейкоцитах, в клетках лёгких, селезёнки, мозга, сердца. Выделяют 6 типов лейкотриенов: A, B, C, D, E, F. В лейкоцитах они стимулируют подвижность, хемотаксис и миграцию клеток в очаг воспаления. Также вызывают сокращение мускулатуры бронхов в дозах в 100- 1000 раз меньших, чем гистамин.

Взаимодействие гормонов с рецепторами клеток-мишеней Для проявления биологической активности связывание гормонов с рецепторами должно приводить к образованию сигнала, который вызывает биологический ответ. Например: щитовидная железа – мишень для тиротропина, под действием которого увеличивается количество ацинарных клеток, повышается скорость синтеза тиреоидных гормонов. Клетки-мишени отличают соответсвующий гормон, благодаря наличию соответствующего рецептора.

Общая характеристика рецепторов Рецепторы могут находится: — на поверхности клеточной мембраны — внутри клетки – в цитозоле или в ядре. Рецепторы – это белки, могут состоять из нескольких доменов. Мембранные рецепторы имеют домен узнавания и связывания с гормоном, трансмембранный и цитоплазматический домены. Внутриклеточные (ядерные) – домены связывания с гормоном, с ДНК и с белками, регулирующие трансдукцию.

Основные этапы передачи гормонального сигнала: через мембранные (гидрофобные) и и внутриклеточн ые ые (гидрофильные) рецепторы. Это быстрый и медленный пути.

Гормональный сигнал меняет скорость метаболических процессов ответ путем: — изменение активности ферментов — изменение количества ферментов. По механизму действия различают гормоны: — взаимодействующие с мембранными рецепторами (пептидные гормоны, адреналин, эйкозаноиды) и — взаимодействующие с внутриклеточными рецепторами (стероидные и тиреодные гормоны)

Передача гормонального сигнала через внутриклеточные рецепторы для стероидных гормонов (гормоны коры надпочечников и половые гормоны), тиреодных гормонов (Т 3 и Т 4). Медленный тип передачи.

Передача гормонального сигнала через мембранные рецепторы Передача информации от первичного посредника гормона осуществляется через рецептор. Этот сигнал рецепторы трансформируют в изменение концентрации вторичных посредников, получивших название вторичных мессенджеров. Сопряжение рецептора с эффекторной системой осуществляется через GG –белок. Общим механизмом, посредством которого реализуются биологические эффекты является процесс «фосфорилирования – дефосфорилирования ферментов» Существуют разные механизмы передачи гормонального сигналы через мембранные рецепторы – аденилатциклазная, гуанилатциклазная, инозитолфосфатная системы и другие.

Сигнал от гормона трансформируется в изменении концентрации вторичных посредников – ц. АМФ, ц. ГТФ, ИФ 3, ДАГ, СА 2+, NO.

Самая распространенная система передача гормонального сигнала через мембранные рецепторы – аденилатциклазная система. Комплекс гормон-рецептор связан с G – белком, который имеет 3 субъединицы (α , β и γ). В отсутствии гормона α — субъединица связана с ГТФ и аденилатциклазой. Комплекс гормон-рецептор приводит к отщеплению димера βγ от α ГТФ. Субъединица α ГТФ активирует аденилатциклазу, катализирующую образование циклической АМФ (ц. АМФ). ц. АМФ активирует протеинкиназу А(ПКА), фосфорилируюшую ферменты, которые меняют скорость метаболических процессов. Протеинкиназы различают А, В, С и др.

Адреналин и глюкагон через аденилатциклазную систему передачи гормонального сигнала активируют гормонзависимую ТАГ-липазу адипоцитов. Происходит при напряжении организма (голодании, длительной мышечной работе, охлаждении). Инсулин блокирует этот процесс. Протеинкиназа А фосфорилирует ТАГ-липазу и активирует ее. ТАГ-липаза отщепляет от от триацилглицеролов жирные кислоты с образованием глицерола. Жирные кислоты окисляются и обеспечивают организм энергией.

Передача сигнала с адренорецепторов. АС – аденилатциклаза, Pk. A – протеинкиназа А, Pk. C – протеинкиназа С, Фл. С – фосфолипаза С, Фл. А 2 – фосфолипаза А 2, Фл. D – фосфолипаза D, ФХ – фосфатидилхолин, ФЛ – фосфолипиды, ФК – фосфатидная кислота, Ах. К – арахидоновая кислота, PIP 2 – фосфатидилинозитол бифосфат, IP 3 – инозитол трифосфат, DAG – диацилглицерол, Pg – простагландины, LT – лейкотриены.

Адренорецепторы всех типов реализуют свое действие через Gs-белки. α- субъединицы этого белка активируют аденилатциклазу, которая обеспечивает синтез в клетке ц. АМФ из АТФ и активацию ц. АМФ зависимой протеинкиназы А. ββ γ-субъединицы Gs-белка активируют Са 2+-каналы L-типа и макси-K+-каналы. Под влиянием ц. АМФ-зависимой протеинкиназы А происходит фосфорилирование киназы легких цепей миозина и она переходит в неактивную форму, не способную фосфорилировать легкие цепи миозина. Процесс фосфорилирования легких цепей прекращается и гладкомышечная клетка расслабляется.

Американские ученые Роберт Лефковиц и Брайан Кобилка удостоились Нобелевской премии в 2012 г. за постижение механизмов взаимодействия рецепторов адреналина с G-белками. Взаимодействие бета-2 рецептора (обозначен синим цветом) c G- белками (обозначены зеленым цветом). Рецепторы, сопряженные с G-белками, очень красивые, если рассматривать архитектурные молекулярные ансамбли клетки как шедевры природы. Их называют «семиспиральными» , поскольку они, спирально упакованы в клеточной мембране на манер елочного серпантина и «пронизывают» ее семь раз, выставляя на поверхность «хвостик» , способный воспринять сигнал и передать конформационные изменения всей молекуле.

G-белки (англ. G proteins) - это семейство белков, относящихся к ГТФазам и функционирующих в качестве посредников во внутриклеточных сигнальных каскадах. G-белки названы так, поскольку в своём сигнальном механизме они используют замену ГДФ (синий цвет) на ГТФ (зеленый цвет) как молекулярный функциональный «выключатель» для регулировки клеточных процессов.

G-белки делятся на две основных группы - гетеротримерные («большие») и «малые» . Гетеротримерные G-белки - это белки с четвертичной структурой, состоящие из трёх субъединиц: альфа(α), бета (β) и гамма (γ). Малые G-белки - это белки из одной полипептидной цепи, они имеют молекулярную массу 20- 25 к. Да и относятся к суперсемейству Ras малых ГТФаз. Их единственная полипептидная цепь гомологична α-субъединице гетеротримерных G-белков. Обе группы G-белков участвуют во внутриклеточной сигнализации.

Циклический аденозинмонофосфат (циклический AMФ, ц. AMФ, c. AMP) - производное АТФ, выполняющее в организме роль вторичного посредника, использующегося для внутриклеточного распространения сигналов некоторых гормонов (например, глюкагона или адреналина), которые не могут проходить через клеточную мембрану. .

Каждой из систем передачи гормонального сигнала соответствует определенный класс протеинкиназ Активность протеинкиназ типа А регулируется ц. АМФ, протеинкиназы G — ц. ГМФ. Са 2+ — кальмодулинзависимые протеинкиназы находятся под контролем концентрации СА 2+. Протеинкиназы типа С регулируются ДАГ. Повышение уровня какого-либо вторичного посредника приводит к активации определенного класса протеинкиназ. Иногда субъединица мембранного рецептора может обладать активностью фермента. Например: тирозиновая протеинкиназа рецептора инсулина, активность которой регулируется гормоном.

Действие инсулина на клетки-мишени начинается после его связывания с мембранными рецепторами, при этом внутриклеточный домен рецептора обладает тирозинкиназной активностью. Тирозинкиназа запускает процессы фосфорилирования внутриклеточных белков. Происходящее при этом аутофосфорилирование рецептора ведет к усилению первичного сигнала. Инсулин-рецепторный комплекс может вызывать активирование фосфолипазы С, образование вторичных посредников инозитолтрифосфата и диацилглицерола, активацию протеинкиназы С, ингибирование ц. АМФ. Участие нескольких систем вторичных посредников объясняет многообразие и различия эффектов инсулина в разных тканях.

Другая система – гуанилатциклазная мессенджерская система. Цитоплазматический домен рецептора обладает активностью гуанилатциклазы (гемсодержащий фермент). Молекулы ц. ГТФ могут активировать ионные каналы или протеинкиназу GG , фосфорилирующую ферменты. ц. ГМФ контролирует обмен воды и ионный транспорт в почках и кишечнике, а в сердечной мышце служит сигналом релаксации.

Инозитолфосфатная система. Связывание гормона с рецептором, вызывает изменение конформациии рецептора. Происходит диссоциация G-G- белка и ГДФ заменяется на ГТФ. Отделившаяся α-субъединица, связанная с молекулой ГТФ, приобретает сродство к фосфолипазе С. Под действием фосфолипазы-С происходит гидролиз липида мембраны фосфатидилинозитол-4, 5 -бисфосфата (ФИФ 2) и образование инозитол-1, 4, 5 -трифосфат (ИФ 3) и диацилглицерол (ДАГ). ДАГ участвует в активации фермента протеинкиназы С (ПКС). Инозитол-1, 4, 5 -трифосфат (ИФ 3) связывается специфическими центрами Са 2+-канала мембраны ЭР, это приводит к изменению конформации белка и открытию канала — Са 2+ поступает в цитозоль. В отсутствие в цитозоле ИФ 3 канал закрыт.

Гормоны, секретируемые железами внутренней секреции, связываются с транспортными белками плазмы или в некоторых случаях адсорбируются на клетках крови и доставляются к органам и тканям, влияя на их функцию и обмен веществ. Некоторые органы и ткани обладают очень высокой чувствительностью к гормонам, поэтому их называют органами-мишенями или тканями -мишенями. Гормоны влияют буквально на все стороны обмена веществ, функции и структуры в организме.

Согласно современным представлениям, действие гормонов основано на стимуляции или угнетении каталитической функции определенных ферментов. Этот эффект достигается посредством активации или ингибирования уже имеющихся ферментов в клетках за счет ускорения их синтеза путём активации генов. Гормоны могут увеличивать или уменьшать проницаемость клеточных и субклеточных мембран для ферментов и других биологически активных веществ, благодаря чему облегчается или тормозится действие фермента. гормон органический организм железа

Мембранный механизм . Гормон связывается с клеточной мембраной и в месте связывания изменяет её проницаемость для глюкозы, аминокислот и некоторых ионов. В этом случае гормон выступает как эффектор транспортных средств мембраны. Такое действие оказывает инсулин, изменяя транспорт глюкозы. Но этот тип транспорта гормонов редко встречается в изолированном виде. Инсулин, например, обладает как мембранным, так и мембранно-внутриклеточным механизмом действия.

Мембранно-внутриклеточный механизм . По мембранно-внутриклеточному типу действуют гормоны, которые не проникают в клетку и поэтому влияют на обмен веществ через внутриклеточного химического посредника. К ним относят белково-пептидные гормоны (гормоны гипоталамуса, гипофиза, поджелудочной и паращитовидной желез, тиреокальцитонин щитовидной железы); производные аминокислот (гормоны мозгового слоя надпочечников - адреналин и норадреналин, щитовидной железы - тироксин, трийодтиронин).

Внутриклеточный (цитозольный) механизм действия . Он характерен для стероидных гармонов (кортикостероидов, половых гормонов - андрогенов, эстрогенов и гестагенов). Стероидные гормоны взаимодействуют с рецепторами, находящимися в цитоплазме. Образовавшийся гормон-рецепторный комплекс переносится в ядро и действует непосредственно на геном, стимулируя или угнетая его активность, т.е. действует на синтез ДНК, изменяя скорость транскрипции и количество инфармационной (матричной) РНК (мРНК). Увеличение или уменьшение количества мРНК влияет на синтез белка в процессе трансляции, что приводит к изменению функциональной активности клетки.