Меню
Бесплатно
Главная  /  Народные способы лечения  /  Нод и нок чисел - наибольший общий делитель и наименьшее общее кратное нескольких чисел. Наибольший общий делитель (НОД): определение, примеры и свойства

Нод и нок чисел - наибольший общий делитель и наименьшее общее кратное нескольких чисел. Наибольший общий делитель (НОД): определение, примеры и свойства

Множество делителей

Рассмотрим такую задачу: найти делитель числа 140. Очевидно, что у числа 140 не один делитель, а несколько. В таких случаях говорят, что задача имеет множество решений. Найдем их все. Прежде всего разложим данное число на простые множители:

140 = 2 ∙ 2 ∙ 5 ∙ 7.

Теперь мы без труда можем выписать все делители. Начнем с простых делителей, то есть тех, которые присутствуют в разложении, приведенном выше:

Затем выпишем те, которые получаются попарным умножением простых делителей:

2∙2 = 4, 2∙5 = 10, 2∙7 = 14, 5∙7 = 35.

Затем - те, которые содержат в себе три простых делителя:

2∙2∙5 = 20, 2∙2∙7 = 28, 2∙5∙7 = 70.

Наконец, не забудем единицу и само разлагаемое число:

Все найденные нами делители образуют множество делителей числа 140, которое записывается с помощью фигурных скобок:

Множество делителей числа 140 =

{1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}.

Для удобства восприятия мы выписали здесь делители (элементы множества ) в порядке возрастания, но, вообще говоря, это делать необязательно. Кроме того, введем сокращение записи. Вместо «Множество делителей числа 140» будем писать «Д(140)». Таким образом,

Точно так же можно найти множество делителей для любого другого натурального числа. Например, из разложения

105 = 3 ∙ 5 ∙ 7

мы получаем:

Д(105) = {1, 3, 5, 7, 15, 21, 35, 105}.

От множества всех делителей следует отличать множество простых делителей, которые для чисел 140 и 105 равны соответственно:

ПД(140) = {2, 5, 7}.

ПД(105) = {3, 5, 7}.

Следует особо подчеркнуть, что в разложении числа 140 на простые множители двойка присутствует два раза, в то время как во множестве ПД(140) - только один. Множество ПД(140) - это, по своей сути, все ответы на задачу: «Найти простой множитель числа 140». Ясно, что один и тот же ответ не следует повторять больше одного раза.

Сокращение дробей. Наибольший общий делитель

Рассмотрим дробь

Мы знаем, что эту дробь можно сократить на такое число, которое одновременно является и делителем числителя (105) и делителем знаменателя (140). Взглянем на множества Д(105) и Д(140) и выпишем их общие элементы.

Д(105) = {1, 3, 5, 7, 15, 21, 35, 105};

Д(140) = {1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}.

Общие элементы множеств Д(105) и Д(140) =

Последнее равенство можно записать короче, а именно:

Д(105) ∩ Д(140) = {1, 5, 7, 35}.

Здесь специальный значок «∩» («мешок отверстием вниз») как раз и указывает на то, что из двух множеств, записанных по разные стороны от него, надо выбрать только общие элементы. Запись «Д(105) ∩ Д(140)» читается «пересечение множеств Дэ от 105 и Дэ от 140».

[Заметим по ходу дела, что с множествами можно производить разные бинарные операции, почти как с числами. Другой распространенной бинарной операцией является объединение , которое обозначается значком «∪» («мешок отверстием вверх»). В объединение двух множеств входят все элементы как того, так и другого множества:

ПД(105) = {3, 5, 7};

ПД(140) = {2, 5, 7};

ПД(105) ∪ ПД(140) = {2, 3, 5, 7}. ]

Итак, мы выяснили, что дробь

можно сократить на любое из чисел, принадлежащих множеству

Д(105) ∩ Д(140) = {1, 5, 7, 35}

и нельзя сократить ни на какое другое натуральное число. Вот все возможные способы сокращения (за исключением неинтересного сокращения на единицу):

Очевидно, что практичнее всего сокращать дробь на число, по возможности большее. В данном случае это число 35, про которое говорят, что оно является наибольшим общим делителем (НОД ) чисел 105 и 140. Это записывается как

НОД(105, 140) = 35.

Впрочем, на практике, если нам даны два числа и требуется найти их наибольший общий делитель, мы вовсе не должны строить какие-либо множества. Достаточно просто разложить оба числа на простые множители и подчеркнуть те из этих множителей, которые являются общими для обоих разложений, например:

105 = 3 ∙ 5 7 ;

140 = 2 ∙ 2 ∙ 5 7 .

Перемножая подчеркнутые числа (в любом из разложений), получаем:

НОД(105, 140) = 5 7 = 35.

Разумеется, возможен случай, когда подчеркнутых множителей окажется больше двух:

168 = 2 2 ∙ 2 ∙ 3 ∙ 7;

396 = 2 2 3 ∙ 3 ∙ 11.

Отсюда видно, что

НОД(168, 396) = 2 2 3 = 12.

Особого упоминания заслуживает ситуация, когда общих множителей совсем нет и подчеркивать нечего, например:

42 = 2 ∙ 3 ∙ 7;

В этом случае,

НОД(42, 55) = 1.

Два натуральных числа, для которых НОД равен единице, называются взаимно простыми . Если из таких чисел составить дробь, например,

то такая дробь является несократимой .

Вообще говоря, правило сокращения дробей можно записать в таком виде:

a / НОД(a , b )

b / НОД(a , b )

Здесь предполагается, что a и b - натуральные числа, а вся дробь положительна. Если мы теперь припишем знак «минус» к обоим частям этого равенства, то получим соответствующее правило для отрицательных дробей.

Сложение и вычитание дробей. Наименьшее общее кратное

Пусть требуется вычислить сумму двух дробей:

Мы уже знаем, как раскладываются на простые множители знаменатели:

105 = 3 ∙ 5 7 ;

140 = 2 ∙ 2 ∙ 5 7 .

Из этого разложения сразу следует, что, для того чтобы привести дроби к общему знаменателю, достаточно числитель и знаменатель первой дроби умножить на 2 ∙ 2 (произведение неподчеркнутых простых множителей второго знаменателя), а числитель и знаменатель второй дроби - на 3 («произведение» неподчеркнутых простых множителей первого знаменателя). В результате знаменатели обеих дробей станут равны числу, которое можно представить так:

2 ∙ 2 ∙ 3 ∙ 5 7 = 105 ∙ 2 ∙ 2 = 140 ∙ 3 = 420.

Нетрудно видеть, что оба исходных знаменателя (как 105, так и 140) являются делителями числа 420, а число 420, в свою очередь, кратно обоим знаменателям, - и не просто кратно, оно является наименьшим общим кратным (НОК ) чисел 105 и 140. Это записывается так:

НОК(105, 140) = 420.

Приглядевшись повнимательнее к разложению чисел 105 и 140, мы видим, что

105 ∙ 140 = НОК(105, 140) ∙ НОД(105, 140).

Точно так же, для произвольных натуральных чисел b и d :

b d = НОК(b , d ) ∙ НОД(b , d ).

Теперь давайте доведем до конца суммирование наших дробей:

3 ∙ 5 7

2 ∙ 2 ∙ 5 7

2 ∙ 2 ∙ 3 ∙ 5 7

2 ∙ 2 ∙ 3 ∙ 5 7

2 ∙ 2 ∙ 3 ∙ 5 ∙ 7

2 ∙ 2 ∙ 3 ∙ 5 ∙ 7

2 ∙ 2 ∙ 3 ∙ 5

Примечание. Для решения некоторых задач требуется знать, что такое квадрат числа. Квадратом числа a называется число a , помноженное само на себя, то есть a a . (Как нетрудно видеть, оно равно площади квадрата со стороной a ).

Наибольший общий делитель

Определение 2

Если натуральное число a делится на натуральное число $b$, то $b$ называют делителем числа $a$, а число $a$ называют кратным числа $b$.

Пусть $a$ и $b$-натуральные числа. Число $c$ называют общим делителем и для $a$ и для $b$.

Множество общих делителей чисел $a$ и $b$ конечно, так как ни один из этих делителей не может быть больше, чем $a$. Значит,среди этих делителей есть наибольший, который называют наибольшим общим делителем чисел $a$ и $b$ и для его обозначения используют записи:

$НОД \ (a;b) \ или \ D \ (a;b)$

Чтобы найти наибольший общий делитель двух, чисел необходимо:

  1. Найти произведение чисел, найденных на шаге 2. Полученное число и будет искомым наибольшим общим делителем.

Пример 1

Найти НОД чисел $121$ и $132.$

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Выбрать числа, которые входят в разложение этих чисел

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=2\cdot 11=22$

Пример 2

Найти НОД одночленов $63$ и $81$.

Будем находить согласно представленному алгоритму. Для этого:

    Разложим числа на простые множители

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Выбираем числа, которые входят в разложение этих чисел

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Найдем произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=3\cdot 3=9$

Найти НОД двух чисел можно и по-другому, используя множество делителей чисел.

Пример 3

Найти НОД чисел $48$ и $60$.

Решение:

Найдем множество делителей числа $48$: $\left\{{\rm 1,2,3.4.6,8,12,16,24,48}\right\}$

Теперь найдем множество делителей числа $60$:$\ \left\{{\rm 1,2,3,4,5,6,10,12,15,20,30,60}\right\}$

Найдем пересечение этих множеств: $\left\{{\rm 1,2,3,4,6,12}\right\}$- данное множество будет определять множество общих делителей чисел $48$ и $60$. Наибольший элемент в данном множестве будет число $12$. Значит наибольший общий делитель чисел $48$ и $60$ будет $12$.

Определение НОК

Определение 3

Общим кратным натуральных чисел $a$ и $b$ называется натуральное число, которое кратно и $a$ и $b$.

Общими кратными чисел называются числа которые делятся на исходные без остатка.Например для чисел $25$ и $50$ общими кратными будут числа $50,100,150,200$ и т.д

Наименьшее из общих кратных будет называться наименьшим общим кратным и обозначается НОК$(a;b)$ или K$(a;b).$

Чтобы найти НОК двух чисел, необходимо:

  1. Разложить числа на простые множители
  2. Выписать множители, входящие в состав первого числа и добавить к ним множители, которые входят в состав второго и не ходят в состав первого

Пример 4

Найти НОК чисел $99$ и $77$.

Будем находить согласно представленному алгоритму. Для этого

    Разложить числа на простые множители

    $99=3\cdot 3\cdot 11$

    Выписать множители, входящие в состав первого

    добавить к ним множители, которые входят в состав второго и не ходят в состав первого

    Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наименьшим общим кратным

    $НОК=3\cdot 3\cdot 11\cdot 7=693$

    Составление списков делителей чисел часто очень трудоемкое занятие. Существует способ нахождение НОД, называемый алгоритмом Евклида.

    Утверждения, на которых основан алгоритм Евклида:

    Если $a$ и $b$ --натуральные числа, причем $a\vdots b$, то $D(a;b)=b$

    Если $a$ и $b$ --натуральные числа, такие что $b

Пользуясь $D(a;b)= D(a-b;b)$, можно последовательно уменьшать рассматриваемые числа до тех пор, пока не дойдем до такой пары чисел, что одно из них делится на другое. Тогда меньшее из этих чисел и будет искомым наибольшим общим делителем для чисел $a$ и $b$.

Свойства НОД и НОК

  1. Любое общее кратное чисел $a$ и $b$ делится на K$(a;b)$
  2. Если $a\vdots b$ , то К$(a;b)=a$
  3. Если К$(a;b)=k$ и $m$-натуральное число, то К$(am;bm)=km$

    Если $d$-общий делитель для $a$ и $b$,то К($\frac{a}{d};\frac{b}{d}$)=$\ \frac{k}{d}$

    Если $a\vdots c$ и $b\vdots c$ ,то $\frac{ab}{c}$ - общее кратное чисел $a$ и $b$

    Для любых натуральных чисел $a$ и $b$ выполняется равенство

    $D(a;b)\cdot К(a;b)=ab$

    Любой общийй делитель чисел $a$ и $b$ является делителем числа $D(a;b)$

Сейчас и в дальнейшем мы будем подразумевать, что хотя бы одно из данных чисел отлично от нуля. Если все данные числа равны нулю, то их общим делителем является любое целое число, а так как целых чисел бесконечно много, то мы не можем говорить о наибольшем из них. Следовательно, нельзя говорить о наибольшем общем делителе чисел, каждое из которых равно нулю.

Теперь мы можем дать определение наибольшего общего делителя двух чисел.

Определение.

Наибольший общий делитель двух целых чисел – это наибольшее целое число, делящее два данных целых числа.

Для краткой записи наибольшего общего делителя часто используют аббревиатуру НОД – Наибольший Общий Делитель. Также наибольший общий делитель двух чисел a и b часто обозначают как НОД(a, b) .

Приведем пример наибольшего общего делителя (НОД) двух целых чисел. Наибольший общий делитель чисел 6 и −15 равен 3 . Обоснуем это. Запишем все делители числа шесть: ±6 , ±3 , ±1 , а делителями числа −15 являются числа ±15 , ±5 , ±3 и ±1 . Теперь можно найти все общие делители чисел 6 и −15 , это числа −3 , −1 , 1 и 3 . Так как −3<−1<1<3 , то 3 – это наибольший общий делитель чисел 6 и −15 . То есть, НОД(6, −15)=3 .

Определение наибольшего общего делителя трех и большего количества целых чисел аналогично определению НОД двух чисел.

Определение.

Наибольший общий делитель трех и большего количества целых чисел – это наибольшее целое число, делящее одновременно все данные числа.

Наибольший общий делитель n целых чисел a 1 , a 2 , …, a n мы будем обозначать как НОД(a 1 , a 2 , …, a n) . Если найдено значение b наибольшего общего делителя этих чисел, то можно записать НОД(a 1 , a 2 , …, a n)=b .

В качестве примера приведем НОД четырех целых чисел −8 , 52 , 16 и −12 , он равен 4 , то есть, НОД(−8, 52, 16, −12)=4 . Это можно проверить, записав все делители данных чисел, выбрав из них общие и определив наибольший общий делитель.

Отметим, что наибольший общий делитель целых чисел может быть равен одному из этих чисел. Это утверждение справедливо в том случае, если все данные числа делятся на одно из них (доказательство приведено в следующем пункте этой статьи). Например, НОД(15, 60, −45)=15 . Это действительно так, так как 15 делит и число 15 , и число 60 , и число −45 , и не существует общего делителя чисел 15 , 60 и −45 , который превосходит 15 .

Особый интерес представляют так называемые взаимно простые числа , - такие целые числа, наибольший общий делитель которых равен единице.

Свойства наибольшего общего делителя, алгоритм Евклида

Наибольший общий делитель обладает рядом характерных результатов, иными словами, рядом свойств. Сейчас мы перечислим основные свойства наибольшего общего делителя (НОД) , формулировать их мы будем в виде теорем и сразу приводить доказательства.

Все свойства наибольшего общего делителя мы будем формулировать для положительных целых чисел, при этом будем рассматривать лишь положительные делители этих чисел.

    Наибольший общий делитель чисел a и b равен наибольшему общему делителю чисел b и a , то есть, НОД(a, b)=НОД(a, b) .

    Это свойство НОД напрямую следует из определения наибольшего общего делителя.

    Если a делится на b , то множество общих делителей чисел a и b совпадает со множеством делителей числа b , в частности, НОД(a, b)=b .

    Доказательство.

    Любой общий делитель чисел a и b является делителем каждого из этих чисел, в том числе и числа b . С другой стороны, так как a кратно b , то любой делитель числа b является делителем и числа a в силу того, что делимость обладает свойством транзитивности, следовательно, любой делитель числа b является общим делителем чисел a и b . Этим доказано, что если a делится на b , то совокупность делителей чисел a и b совпадает с совокупностью делителей одного числа b . А так как наибольшим делителем числа b является само число b , то наибольший общий делитель чисел a и b также равен b , то есть, НОД(a, b)=b .

    В частности, если числа a и b равны, то НОД(a, b)=НОД(a, a)=НОД(b, b)=a=b . К примеру, НОД(132, 132)=132 .

    Доказанное свойство наибольшего делителя позволяет нам находить НОД двух чисел, когда одно из них делится на другое. При этом НОД равен одному из этих чисел, на которое делится другое число. Например, НОД(8, 24)=8 , так как 24 кратно восьми.

    Если a=b·q+c , где a , b , c и q – целые числа, то множество общих делителей чисел a и b совпадает со множеством общих делителей чисел b и c , в частности, НОД(a, b)=НОД(b, c) .

    Обоснуем это свойство НОД.

    Так как имеет место равенство a=b·q+c , то всякий общий делитель чисел a и b делит также и c (это следует из свойств делимости). По этой же причине, всякий общий делитель чисел b и c делит a . Поэтому совокупность общих делителей чисел a и b совпадает с совокупностью общих делителей чисел b и c . В частности, должны совпадать и наибольшие из этих общих делителей, то есть, должно быть справедливо следующее равенство НОД(a, b)=НОД(b, c) .

    Сейчас мы сформулируем и докажем теорему, которая представляет собой алгоритм Евклида . Алгоритм Евклида позволяет находить НОД двух чисел (смотрите нахождение НОД по алгоритму Евклида). Более того алгоритм Евклида позволит нам доказать приведенные ниже свойства наибольшего общего делителя.

    Прежде чем дать формулировку теоремы, рекомендуем освежить в памяти теорему из раздела теории , которая утверждает, что делимое a может быть представлено в виде b·q+r , где b – делитель, q – некоторое целое число, называемое неполным частным, а r – целое число, удовлетворяющее условию , называемое остатком.

    Итак, пусть для двух ненулевых целых положительных чисел a и b справедлив ряд равенств

    заканчивающийся, когда r k+1 =0 (что неизбежно, так как b>r 1 >r 2 >r 3 , … - ряд убывающих целых чисел, и этот ряд не может содержать более чем конечное число положительных чисел), тогда r k – это наибольший общий делитель чисел a и b , то есть, r k =НОД(a, b) .

    Доказательство.

    Докажем сначала, что r k является общим делителем чисел a и b , после чего покажем, что r k не просто делитель, а наибольший общий делитель чисел a и b .

    Будем двигаться по записанным равенствам снизу вверх. Из последнего равенства можно сказать, что r k−1 делится на r k . Учитывая этот факт, а также предыдущее свойство НОД, предпоследнее равенство r k−2 =r k−1 ·q k +r k позволяет утверждать, что r k−2 делится на r k , так как и r k−1 делится на r k и r k делится на r k . По аналогии из третьего снизу равенства заключаем, что r k−3 делится на r k . И так далее. Из второго равенства получаем, что b делится на r k , а из первого равенства получаем, что a делится на r k . Следовательно, r k является общим делителем чисел a и b .

    Осталось доказать, что r k =НОД(a, b) . Для достаточно показать, что любой общий делитель чисел a и b (обозначим его r 0 ) делит r k .

    Будем двигаться по исходным равенствам сверху вниз. В силу предыдущего свойства из первого равенства следует, что r 1 делится на r 0 . Тогда из второго равенства получаем, что r 2 делится на r 0 . И так далее. Из последнего равенства получаем, что r k делится на r 0 . Таким образом, r k =НОД(a, b) .

    Из рассмотренного свойства наибольшего общего делителя следует, что множество общих делителей чисел a и b совпадает с множеством делителей наибольшего общего делителя этих чисел. Это следствие из алгоритма Евклида позволяет найти все общие делители двух чисел как делители НОД этих чисел.

    Пусть a и b – целые числа, одновременно не равные нулю, тогда существуют такие целые числа u 0 и v 0 , то справедливо равенство НОД(a, b)=a·u 0 +b·v 0 . Последнее равенство представляет собой линейное представление наибольшего общего делителя чисел a и b , это равенство называют соотношением Безу, а числа u 0 и v 0 – коэффициентами Безу.

    Доказательство.

    По алгоритму Евклида мы можем записать следующие равенства

    Из первого равенства имеем r 1 =a−b·q 1 , и, обозначив 1=s 1 и −q 1 =t 1 , это равенство примет вид r 1 =s 1 ·a+t 1 ·b , причем числа s 1 и t 1 - целые. Тогда из второго равенства получим r 2 =b−r 1 ·q 2 = b−(s 1 ·a+t 1 ·b)·q 2 =−s 1 ·q 2 ·a+(1−t 1 ·q 2)·b . Обозначив −s 1 ·q 2 =s 2 и 1−t 1 ·q 2 =t 2 , последнее равенство можно записать в виде r 2 =s 2 ·a+t 2 ·b , причем s 2 и t 2 – целые числа (так как сумма, разность и произведение целых чисел является целым числом). Аналогично из третьего равенства получим r 3 =s 3 ·a+t 3 ·b , из четвертого r 4 =s 4 ·a+t 4 ·b , и так далее. Наконец, r k =s k ·a+t k ·b , где s k и t k - целые. Так как r k =НОД(a, b) , и, обозначив s k =u 0 и t k =v 0 , получим линейное представление НОД требуемого вида: НОД(a, b)=a·u 0 +b·v 0 .

    Если m – любое натуральное число, то НОД(m·a, m·b)=m·НОД(a, b) .

    Обоснование этого свойства наибольшего общего делителя таково. Если умножить на m обе стороны каждого из равенств алгоритма Евклида, то получим, что НОД(m·a, m·b)=m·r k , а r k – это НОД(a, b) . Следовательно, НОД(m·a, m·b)=m·НОД(a, b) .

    На этом свойстве наибольшего общего делителя основан способ нахождения НОД с помощью разложения на простые множители .

    Пусть p – любой общий делитель чисел a и b , тогда НОД(a:p, b:p)=НОД(a, b):p , в частности, если p=НОД(a, b) имеем НОД(a:НОД(a, b), b:НОД(a, b))=1 , то есть, числа a:НОД(a, b) и b:НОД(a, b) - взаимно простые.

    Так как a=p·(a:p) и b=p·(b:p) , и в силу предыдущего свойства, мы можем записать цепочку равенств вида НОД(a, b)=НОД(p·(a:p), p·(b:p))= p·НОД(a:p, b:p) , откуда и следует доказываемое равенство.

    Только что доказанное свойство наибольшего общего делителя лежит в основе .

    Сейчас озвучим свойство НОД, которое сводит задачу нахождения наибольшего общего делителя трех и большего количества чисел к последовательному отысканию НОД двух чисел.

    Наибольший общий делитель чисел a 1 , a 2 , …, a k равен числу d k , которое находится при последовательном вычислении НОД(a 1 , a 2)=d 2 , НОД(d 2 , a 3)=d 3 , НОД(d 3 , a 4)=d 4 , …, НОД(d k-1 , a k)=d k .

    Доказательство базируется на следствии из алгоритма Евклида. Общие делители чисел a 1 и a 2 совпадают с делителями d 2 . Тогда общие делители чисел a 1 , a 2 и a 3 совпадают с общими делителями чисел d 2 и a 3 , следовательно, совпадают с делителями d 3 . Общие делители чисел a 1 , a 2 , a 3 и a 4 совпадают с общими делителями d 3 и a 4 , следовательно, совпадают с делителями d 4 . И так далее. Наконец, общие делители чисел a 1 , a 2 , …, a k совпадают с делителями d k . А так как наибольшим делителем числа d k является само число d k , то НОД(a 1 , a 2 , …, a k)=d k .

На этом закончим обзор основных свойств наибольшего общего делителя.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Представленный ниже материал является логическим продолжением теории из статьи под заголовком НОК - наименьшее общее кратное, определение, примеры, связь между НОК и НОД . Здесь мы поговорим про нахождение наименьшего общего кратного (НОК) , и особое внимание уделим решению примеров. Сначала покажем, как вычисляется НОК двух чисел через НОД этих чисел. Дальше рассмотрим нахождение наименьшего общего кратного с помощью разложения чисел на простые множители. После этого остановимся на нахождении НОК трех и большего количества чисел, а также уделим внимание вычислению НОК отрицательных чисел.

Навигация по странице.

Вычисление наименьшего общего кратного (НОК) через НОД

Один из способов нахождения наименьшего общего кратного основан на связи между НОК и НОД . Существующая связь между НОК и НОД позволяет вычислять наименьшее общее кратное двух целых положительных чисел через известный наибольший общий делитель. Соответствующая формула имеет вид НОК(a, b)=a·b:НОД(a, b) . Рассмотрим примеры нахождения НОК по приведенной формуле.

Пример.

Найдите наименьшее общее кратное двух чисел 126 и 70 .

Решение.

В этом примере a=126 , b=70 . Воспользуемся связью НОК с НОД, выражающуюся формулой НОК(a, b)=a·b:НОД(a, b) . То есть, сначала нам предстоит найти наибольший общий делитель чисел 70 и 126 , после чего мы сможем вычислить НОК этих чисел по записанной формуле.

Найдем НОД(126, 70) , используя алгоритм Евклида: 126=70·1+56 , 70=56·1+14 , 56=14·4 , следовательно, НОД(126, 70)=14 .

Теперь находим требуемое наименьшее общее кратное: НОК(126, 70)=126·70:НОД(126, 70)= 126·70:14=630 .

Ответ:

НОК(126, 70)=630 .

Пример.

Чему равно НОК(68, 34) ?

Решение.

Так как 68 делится нацело на 34 , то НОД(68, 34)=34 . Теперь вычисляем наименьшее общее кратное: НОК(68, 34)=68·34:НОД(68, 34)= 68·34:34=68 .

Ответ:

НОК(68, 34)=68 .

Заметим, что предыдущий пример подходит под следующее правило нахождения НОК для целых положительные чисел a и b : если число a делится на b , то наименьшее общее кратное этих чисел равно a .

Нахождение НОК с помощью разложения чисел на простые множители

Другой способ нахождения наименьшего общего кратного базируется на разложении чисел на простые множители . Если составить произведение из всех простых множителей данных чисел, после чего из этого произведения исключить все общие простые множители, присутствующие в разложениях данных чисел, то полученное произведение будет равно наименьшему общему кратному данных чисел .

Озвученное правило нахождения НОК следует из равенства НОК(a, b)=a·b:НОД(a, b) . Действительно, произведение чисел a и b равно произведению всех множителей, участвующих в разложениях чисел a и b . В свою очередь НОД(a, b) равен произведению всех простых множителей, одновременно присутствующих в разложениях чисел a и b (о чем написано в разделе нахождение НОД с помощью разложения чисел на простые множители).

Приведем пример. Пусть мы знаем, что 75=3·5·5 и 210=2·3·5·7 . Составим произведение из всех множителей данных разложений: 2·3·3·5·5·5·7 . Теперь из этого произведения исключим все множители, присутствующие и в разложении числа 75 и в разложении числа 210 (такими множителями являются 3 и 5 ), тогда произведение примет вид 2·3·5·5·7 . Значение этого произведения равно наименьшему общему кратному чисел 75 и 210 , то есть, НОК(75, 210)= 2·3·5·5·7=1 050 .

Пример.

Разложив числа 441 и 700 на простые множители, найдите наименьшее общее кратное этих чисел.

Решение.

Разложим числа 441 и 700 на простые множители:

Получаем 441=3·3·7·7 и 700=2·2·5·5·7 .

Теперь составим произведение из всех множителей, участвующих в разложениях данных чисел: 2·2·3·3·5·5·7·7·7 . Исключим из этого произведения все множители, одновременно присутствующие в обоих разложениях (такой множитель только один – это число 7 ): 2·2·3·3·5·5·7·7 . Таким образом, НОК(441, 700)=2·2·3·3·5·5·7·7=44 100 .

Ответ:

НОК(441, 700)= 44 100 .

Правило нахождения НОК с использованием разложения чисел на простые множители можно сформулировать немного иначе. Если ко множителям из разложения числа a добавить недостающие множители из разложения числа b , то значение полученного произведения будет равно наименьшему общему кратному чисел a и b .

Для примера возьмем все те же числа 75 и 210 , их разложения на простые множители таковы: 75=3·5·5 и 210=2·3·5·7 . Ко множителям 3 , 5 и 5 из разложения числа 75 добавляем недостающие множители 2 и 7 из разложения числа 210 , получаем произведение 2·3·5·5·7 , значение которого равно НОК(75, 210) .

Пример.

Найдите наименьшее общее кратное чисел 84 и 648 .

Решение.

Получаем сначала разложения чисел 84 и 648 на простые множители. Они имеют вид 84=2·2·3·7 и 648=2·2·2·3·3·3·3 . К множителям 2 , 2 , 3 и 7 из разложения числа 84 добавляем недостающие множители 2 , 3 , 3 и 3 из разложения числа 648 , получаем произведение 2·2·2·3·3·3·3·7 , которое равно 4 536 . Таким образом, искомое наименьшее общее кратное чисел 84 и 648 равно 4 536 .

Ответ:

НОК(84, 648)=4 536 .

Нахождение НОК трех и большего количества чисел

Наименьшее общее кратное трех и большего количества чисел может быть найдено через последовательное нахождение НОК двух чисел. Напомним соответствующую теорему, дающую способ нахождения НОК трех и большего количества чисел.

Теорема.

Пусть даны целые положительные числа a 1 , a 2 , …, a k , наименьшее общее кратное m k этих чисел находится при последовательном вычислении m 2 =НОК(a 1 , a 2) , m 3 =НОК(m 2 , a 3) , …, m k =НОК(m k−1 , a k) .

Рассмотрим применение этой теоремы на примере нахождения наименьшего общего кратного четырех чисел.

Пример.

Найдите НОК четырех чисел 140 , 9 , 54 и 250 .

Решение.

В этом примере a 1 =140 , a 2 =9 , a 3 =54 , a 4 =250 .

Сначала находим m 2 =НОК(a 1 , a 2)=НОК(140, 9) . Для этого по алгоритму Евклида определяем НОД(140, 9) , имеем 140=9·15+5 , 9=5·1+4 , 5=4·1+1 , 4=1·4 , следовательно, НОД(140, 9)=1 , откуда НОК(140, 9)=140·9:НОД(140, 9)= 140·9:1=1 260 . То есть, m 2 =1 260 .

Теперь находим m 3 =НОК(m 2 , a 3)=НОК(1 260, 54) . Вычислим его через НОД(1 260, 54) , который также определим по алгоритму Евклида: 1 260=54·23+18 , 54=18·3 . Тогда НОД(1 260, 54)=18 , откуда НОК(1 260, 54)= 1 260·54:НОД(1 260, 54)= 1 260·54:18=3 780 . То есть, m 3 =3 780 .

Осталось найти m 4 =НОК(m 3 , a 4)=НОК(3 780, 250) . Для этого находим НОД(3 780, 250) по алгоритму Евклида: 3 780=250·15+30 , 250=30·8+10 , 30=10·3 . Следовательно, НОД(3 780, 250)=10 , откуда НОК(3 780, 250)= 3 780·250:НОД(3 780, 250)= 3 780·250:10=94 500 . То есть, m 4 =94 500 .

Таким образом, наименьшее общее кратное исходных четырех чисел равно 94 500 .

Ответ:

НОК(140, 9, 54, 250)=94 500 .

Во многих случаях наименьшее общее кратное трех и большего количества чисел удобно находить с использованием разложений данных чисел на простые множители. При этом следует придерживаться следующего правила. Наименьшее общее кратное нескольких чисел равно произведению, которое составляется так: ко всем множителям из разложения первого числа добавляются недостающие множители из разложения второго числа, к полученным множителям добавляются недостающие множители из разложения третьего числа и так далее .

Рассмотрим пример нахождения наименьшего общего кратного с использованием разложения чисел на простые множители.

Пример.

Найдите наименьшее общее кратное пяти чисел 84 , 6 , 48 , 7 , 143 .

Решение.

Сначала получаем разложения данных чисел на простые множители: 84=2·2·3·7 , 6=2·3 , 48=2·2·2·2·3 , 7 (7 – простое число , оно совпадает со своим разложением на простые множители) и 143=11·13 .

Для нахождения НОК данных чисел к множителям первого числа 84 (ими являются 2 , 2 , 3 и 7 ) нужно добавить недостающие множители из разложения второго числа 6 . Разложение числа 6 не содержит недостающих множителей, так как и 2 и 3 уже присутствуют в разложении первого числа 84 . Дальше к множителям 2 , 2 , 3 и 7 добавляем недостающие множители 2 и 2 из разложения третьего числа 48 , получаем набор множителей 2 , 2 , 2 , 2 , 3 и 7 . К этому набору на следующем шаге не придется добавлять множителей, так как 7 уже содержится в нем. Наконец, к множителям 2 , 2 , 2 , 2 , 3 и 7 добавляем недостающие множители 11 и 13 из разложения числа 143 . Получаем произведение 2·2·2·2·3·7·11·13 , которое равно 48 048 .

Определение. Наибольшее натуральное число, на которое делятся без остатка числа а и b, называют наибольшим общим делителем (НОД) этих чисел.

Найдём наибольший общий делитель чисел 24 и 35.
Делителями 24 будут числа 1, 2, 3, 4, 6, 8, 12, 24, а делителями 35 будут числа 1, 5, 7, 35.
Видим, что числа 24 и 35 имеют только один общий делитель - число 1. Такие числа называют взаимно простыми .

Определение. Натуральные числа называют взаимно простыми , если их наибольший общий делитель (НОД) равен 1.

Наибольший общий делитель (НОД) можно найти, не выписывая всех делителей данных чисел.

Разложим на множители числа 48 и 36, получим:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
Из множителей, входящих в разложение первого из этих чисел, вычеркнем те, которые не входят в разложение второго числа (т. е. две двойки).
Остаются множители 2 * 2 * 3. Их произведение равно 12. Это число и является наибольшим общим делителем чисел 48 и 36. Так же находят наибольший общий делитель трёх и более чисел.

Чтобы найти наибольший общий делитель

2) из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел;
3) найти произ ведение оставшихся множителей.

Если все данные числа делятся на одно из них, то это число и является наибольшим общим делителем данных чисел.
Например, наибольшим общим делителем чисел 15, 45, 75 и 180 будет число 15, так как на него делятся все остальные числа: 45, 75 и 180.

Наименьшее общее кратное (НОК)

Определение. Наименьшим общим кратным (НОК) натуральных чисел а и Ь называют наименьшее натуральное число, которое кратно и a, и b. Наименьшее общее кратное (НОК) чисел 75 и 60 можно найти и не выписывая подряд кратные этих чисел. Для этого разложим 75 и 60 на простые множители: 75 = 3 * 5 * 5, а 60 = 2 * 2 * 3 * 5.
Выпишем множители, входящие в разложение первого из этих чисел, и добавим к ним недостающие множители 2 и 2 из разложения второго числа (т.е. объединяем множители).
Получаем пять множителей 2 * 2 * 3 * 5 * 5, произведение которых равно 300. Это число является наименьшим общим кратным чисел 75 и 60.

Так же находят наименьшее общее кратное для трёх и более чисел.

Чтобы найти наименьшее общее кратное нескольких натуральных чисел, надо:
1) разложить их на простые множители;
2) выписать множители, входящие в разложение одного из чисел;
3) добавить к ним недостающие множители из разложений остальных чисел;
4) найти произведение получившихся множителей.

Заметим, что если одно из данных чисел делится на все остальные числа, то это число и является наименьшим общим кратным данных чисел.
Например, наименьшим общим кратным чисел 12, 15, 20 и 60 будет число 60, так как оно делится на все данные числа.

Пифагор (VI в. до н. э.) и его ученики изучали вопрос о делимости чисел. Число, равное сумме всех его делителей (без самого числа), они называли совершенным числом. Например, числа 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) совершенные. Следующие совершенные числа - 496, 8128, 33 550 336. Пифагорейцы знали только первые три совершенных числа. Четвёртое - 8128 - стало известно в I в. н. э. Пятое - 33 550 336 - было найдено в XV в. К 1983 г. было известно уже 27 совершенных чисел. Но до сих пор учёные не знают, есть ли нечётные совершенные числа, есть ли самое большое совершенное число.
Интерес древних математиков к простым числам связан с тем, что любое число либо простое, либо может быть представлено в виде произведения простых чисел, т. е. простые числа - это как бы кирпичики, из которых строятся остальные натуральные числа.
Вы, наверное, обратили внимание, что простые числа в ряду натуральных чисел встречаются неравномерно - в одних частях ряда их больше, в других - меньше. Но чем дальше мы продвигаемся по числовому ряду, тем реже встречаются простые числа. Возникает вопрос: существует ли последнее (самое большое) простое число? Древнегреческий математик Евклид (III в. до н. э.) в своей книге «начала», бывшей на протяжении двух тысяч лет основным учебником математики, доказал, что простых чисел бесконечно много, т. е. за каждым простым числом есть ещё большее простое число.
Для отыскания простых чисел другой греческий математик того же времени Эратосфен придумал такой способ. Он записывал все числа от 1 до какого-то числа, а потом вычёркивал единицу, которая не является ни простым, ни составным числом, затем вычёркивал через одно все числа, идущие после 2 (числа, кратные 2, т. е. 4, 6, 8 и т. д.). Первым оставшимся числом после 2 было 3. Далее вычёркивались через два все числа, идущие после 3 (числа, кратные 3, т. е. 6, 9, 12 и т. д.). в конце концов оставались невычеркнутыми только простые числа.