Меню
Бесплатно
Главная  /  Лекарства и витамины по алфавиту  /  Кто вывел законы движения планет. Движение небесных тел. Законы Кеплера

Кто вывел законы движения планет. Движение небесных тел. Законы Кеплера

Зако́ны Ке́плера - три эмпирических соотношения, интуитивно подобранных Иоганном Кеплером на основе анализа астрономических наблюдений Тихо Браге. Описывают идеализированную гелиоцентрическую орбиту планеты. В рамках классической механики выводятся из решения задачи двух тел предельным переходом / → 0, где , - массы планеты и Солнца.

Первый закон Кеплера (закон эллипсов)

Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точкаP траектории называется перигелием , точка A , наиболее удаленная от Солнца – афелием . Расстояние между афелием и перигелием – большая ось эллипса.

Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым.

Второй закон Кеплера (закон площадей)

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Рис. 1.24.3 иллюстрирует 2-й закон Кеплера.

Второй закон Кеплера эквивалентен закону сохранения момента импульса. На рис. 1.24.3 изображен вектор импульса тела и его составляющие и Площадь, заметенная радиус-вектором за малое время Δt , приближенно равна площади треугольника с основанием r Δθ и высотой r :

Здесь – угловая скорость.

Момент импульса L по абсолютной величине равен произведению модулей векторов и

Поэтому, если по второму закону Кеплера то и момент импульса L при движении остается неизменным.

В частности, поскольку скорости планеты в перигелии и афелии направлены перпендикулярно радиус-векторам и из закона сохранения момента импульса следует:

r P υ P = r A υ A .

Известный датский астроном Тихо Браге (1546-1601), ознакомившись с работой Кеплера "Тайны мира", оценил хорошее знание автором астрономии, его оригинальное мышление и значительный объём выполненных вычислений. Вскоре Тихо Браге встретился с Кеплером, которому тогда было только 24 года от роду, и предложил ему работу в Праге в качестве своего помощника в астрономических наблюдениях и вычислениях. Совместная работа Кеплера с Браге была кратковременной - всего около полутора лет. В 1601 году Тихо Браге умер. После смерти Браге Кеплер принял его должность придворного астронома и астролога у императора Рудольфа II . В Праге Кеплер работал в течение десяти лет. Это был самый плодотворный период в его научной деятельности. Тихо Браге оставил Кеплеру огромное количество материалов с результатами астрономических наблюдений, собранных за долгие годы. Судьба распорядилась так, что на основе этих материалов, проявив выдающиеся математические способности и удивительное трудолюбие, Кеплер открыл свои знаменитые законы. Без этих материалов, без их осмысления открытия Кеплера были бы невозможны.

Несколько слов о научных взглядах знаменитого астронома-наблюдателя Тихо Браге. Этот астроном не был сторонником учения Коперника. Он считал, что является центром Вселенной, а Солнце, Луна и обращаются вокруг Земли. Планеты Браге считал спутниками Солнца. Современный читатель, конечно, может улыбнуться "наивности" исследователя, который в течение четверти века внимательно наблюдал за небом. Но не надо торопиться с выводами. Ведь речь идёт о последней четверти 16-го (!) века, когда астрономам не был известен даже простейший телескоп, когда господствовали идеи геоцентризма, а католическая церковь запрещала даже мысли о гелиоцентрической картине мира. Зато Тихо Браге оставил богатейший наблюдательный материал, в частности, по планете Марс, а также подробные таблицы движения Солнца, по которым можно было найти положение светила на эклиптике в любой момент времени с точностью до одной угловой минуты.

Уже в 1600 году Кеплер начал изучать движения Марса с целью уточнить теорию Коперника. А необходимость уточнения была очевидной, т.к. таблицы движения планет, составленные на основе этой теории, предсказывали положения планет лишь с небольшой точностью, а для объяснения видимой неравномерности движения планет Коперник ввёл в свои модели движения сложные системы эпициклов.

Предпочтение Марсу в изучении движения планет Кеплер отдал потому, что именно в видимом обнаруживались наибольшие отклонения от равномерного движения по окружности.

Из расчётов орбиты Марса в 1605 году Кеплер вывел уравнение, определяющее положение небесных тел (в современной астрономии оно называется уравнением Кеплера). Это уравнение описывает движение небесного тела по эллипсу. Но сначала Кеплер не понимал этого. Он предпринимал попытки проверить свои формулы на кривой овала, затем на кривой яйцеобразного овала. Продолжая размышления и расчёты, он писал в 1604 году: "Правда лежит между кругом и овалом, как будто орбита Марса есть точный эллипс". Но в это время Кеплер ещё не рассматривал даже вариант эллипса в качестве орбиты Марса. Наконец, в 1605 г. он проверил вариант эллипса, и всё сошлось в его расчетах: он понял, что Марс движется по орбите, представляющей эллипс, а Солнце находится в фокусе этого эллипса.

Напомним, что эллипсом называется кривая, для любой точки которой сумма расстояний от двух заданных точек, называемых фокусами эллипса, постоянна (равна большой оси эллипса).

В 1609 году в Праге вышла из печати книга Кеплера "Новая астрономия" ("Astronomia Nova"). В этой книге Кеплер излагает свои два эмпирических закона, открытых прежде всего на основе изучения движения Марса и Земли.

Закон 1. Планеты обращаются вокруг Солнца по эллиптическим орбитам. При этом Солнце располагается не в центре эллипса, а в одном из фокусов эллипса. Следовательно, расстояние планеты от Солнца не всегда одинаковое.

Закон 2. Радиус-вектор планеты (т.е. отрезок, соединяющий Солнце и планету) описывает равные площади за равные промежутки времени. Этот закон указывает, что скорость движения планеты по её орбите непостоянна: при приближении к Солнцу планета движется быстрее, при удалении от него - медленнее. Второй закон движения планет обычно называют законом площадей.

Закон 3. (Сформулирован в книге "Гармония мира" ("Harmonice mundi"), опубликованной по частям в 1618-1621 гг.). Квадраты периодов обращения любых двух планет относятся между собой как кубы их средних расстояний от Солнца.

Не все учёные - современники Кеплера восприняли его законы движения планет. Например, не признавал факт неравномерного движения планет. С течением времени правильность законов Кеплера подтвердилась полностью. Работы Кеплера подготовили почву для открытия Ньютоном закона всемирного тяготения. До настоящего времени законы Кеплера остаются основой небесной механики.

С высоты современных знаний о космосе не следует удивляться тому, что Кеплер имел своеобразные, иногда мистические представления , например, он считал, что Солнце подобно магниту притягивает планеты и, вращаясь вокруг своей оси, сообщает им энергию движения. Кеплер считал, что Солнце не перемещается в пространстве. Кеплер не верил в бесконечность Вселенной, а небесную сферу, на которой видны звёзды, он считал границей мира. В то же время Кеплер "убрал" из своей модели мира некоторые элементы, которые были в модели Коперника, в частности, вращающиеся круговые сферы, якобы несущие на себе планеты, а также отказался от эпициклов, заменив их орбитами в форме эллипсов.

Обнаруженные Галилеем при помощи телескопа в 1610 году четыре "медичейские планеты" (название дано Галилеем в честь герцога Медичи), обращающиеся вокруг Юпитера, Кеплер позднее назвал спутниками Юпитера. Термин "спутник" сохранился в астрономии с тех далёких времён и, как мы теперь знаем, применяется не только в отношении природных небесных тел, но и в отношении аппаратов, создаваемых человеком.

Последней крупной работой Кеплера в области астрономии были так называемые "Рудольфовы таблицы" движения планет, опубликованные в 1627 году. Таблицы были задуманы ещё Тихо Браге, и Кеплер работал над ними почти 22 года. Эти астрономические таблицы были значительно более точными, чем все предыдущие таблицы, в том числе и "Прусские таблицы", составленные в 1551 г. немецким математиком и астрономом Рейнгольдом на основе гелиоцентрической системы Коперника. "Рудольфовы таблицы" использовались астрономами, моряками и путешественниками на протяжении почти двух столетий.

Помимо исследований, связанных с движением планет, Кеплер занимался также изучением комет. Он первым высказал правильную догадку о том, что хвосты комет образуются под действием солнечных лучей, а потому всегда направлены в сторону от Солнца.

Кеплер работал не только в области астрономии. Как и многие , он не замыкался в одной узкой области деятельности. Например, Кеплер разработал теорию логарифмов на арифметической основе и составил весьма точные таблицы логарифмов, опубликованные в 1624 году и неоднократно переиздававшиеся.

Кеплер занимался также проблемами астрономической оптики. Оптика как часть физической науки обязана своим возникновением в значительной степени трудам Кеплера, в частности, его книге "Диоптрика". Интересно, что Кеплер занимался не только технической оптикой, что нашло своё выражение в разработке оптической схемы телескопа, но и подробно изучил и правильно изложил в своих работах действие физиологического механизма зрения и его такие дефекты как близорукость и дальнозоркость.

Методы, которые Кеплер разработал для вычисления объёмов различных тел вращения и площадей плоских фигур, образуемых кривыми второго порядка (овал, эллипс, сечения конуса и др.), были по своей сути начальными элементами дифференциального и интегрального исчисления.

Кеплер вслед за Галилеем дал определение понятия инерции тела, а также вплотную подошел к пониманию тяготения и его роли в движении планет.

Кеплер выдвинул гипотезу о том, что причиной океанских приливов на Земле является воздействие Луны на водную поверхность. Через сто лет эту гипотезу подтвердил .

Кеплер жил в сложный исторический период, когда в Европе почти непрерывно происходили войны между группировками стран, в том числе между многочисленными германскими государствами. В 1618 году в Германии началась , вскоре превратившаяся в общеевропейскую войну, которая продолжалась и после смерти Кеплера и привела к опустошению и обезлюдению Западной Европы.

Средневековый религиозный дурман, в котором продолжала находиться вся Европа, был причиной больших трудностей в научной работе Кеплера и принёс много горя в его личную жизнь.

Иоганн Кеплер родился 27 декабря 1571 года в небольшом городке Вейле близ Штутгарта (ныне федеральная земля Баден-Вюртемберг). Когда Иоганну было 18 лет, он остался без отца, который служил наёмником в испанской армии и погиб на войне. Мать Иоганна, Катарина Кеплер, владела небольшим баром. Семья жила небогато, и поэтому Кеплеру нелегко было после окончания школы при монастыре поступить в 1589 году в Тюбингенский университет. Здесь он изучал математику, астрономию, а потом теологию. Но от первоначального плана стать священником он отказался. Поскольку Кеплер открыто поддерживал учение Коперника, университетские власти, по требованию местных богословов, ещё до окончания учёбы в университете посылают Кеплера в 1594 г. преподавать математику в протестанском училище города Граца (земля Штирия, Австрия).

В Граце Кеплер прожил 6 лет. Уже в 1596 году здесь выходит в свет его первая книга "Тайна мира", которую он переиздал в 1621 году, продолжая верить в наличие скрытой математической гармонии Вселенной.

В 1600-1601 гг. он работает в Праге с известным датским астрономом-наблюдателем Тихо Браге в качестве его помощника в астрономических наблюдениях и вычислениях. После смерти Браге (1601г.) Кеплер принимает должность Браге - придворного астронома и астролога у императора Рудольфа II . В Праге Кеплер продуктивно работает над законами движения планет. В 1609 г. в книге "Новая астрономия" Кеплер формулирует два первых своих закона.

В Пражский период жизни Кеплер наблюдает появление сверхновой и в 1604 году публикует результаты своих наблюдений за ней. В дальнейшем этой сверхновой было присвоено имя Кеплера.

В 1612 году Кеплер переезжает в Линц, где за ним сохраняется должность придворного математика и астронома. Несмотря на высокую должность, Кеплер постоянно нуждался, потому что жалование ему платили нерегулярно и неполностью: из-за бесконечных войн императорская казна была пуста. А Кеплер в этот период (в Линце он жил с 1612 по 1626 год) имел многодетную семью. Кстати, семейная жизнь его сложилась очень драматично. В 1597 году в Граце Кеплер женится на вдове Барбаре Мюллер. Здесь у них рождается двое детей, которые умирают в младенческом возрасте, а жена заболевает падучей болезнью, как раньше называли эпилепсию. Но, как говорит немецкая пословица, беда редко приходит одна. В Граце католическое большинство начинает гонение на протестантов. Мало того, что Кеплер лютеранин по вероисповеданию, что уже неприемлемо для католиков, он ещё занесён в списки "еретиков" за свои научные взгляды. Это уже по-настоящему опасно, и Кеплер покидает в 1600 г. Грац, приняв предложение Тихо Браге о переезде в Прагу (в те времена Чехия была владением Австрийской империи).

В Праге у Кеплера родились два сына и дочь, но в 1611 году умирает его старший сын, а вскоре умирает долго болевшая жена Кеплера Барбара.

В 1613 году Кеплер женится вторично. Его женой становится 24-летняя Сюзанна из рабочей семьи. В этом браке родилось семеро детей, из которых выжили четверо.

В 1615 году на Кеплера обрушивается новое несчастье: его мать Катарина обвиняется церковной инквизицией в колдовстве, а это значит, что ей грозит смертельная опасность. Гадание и траволечение, которыми мать Кеплера иногда подрабатывала, не прошли мимо внимания католических мракобесов. Чего только ни инкриминировалось ей: и связь с дьяволом, и богохульство, и порчу, и даже некромантию... Следствие тянулось пять лет. Защитником матери на суде выступал сам Кеплер. В 1621 году измученную женщину наконец освободили, но силы её были надломлены, и в следующем году она скончалась.

В 1626 году, в разгар Линц был осаждён и захвачен. Кеплер вынужден переехать в Ульм. В 1628 году Кеплер принимает приглашение полководца Валленштейна и переходит к нему на службу в качестве астронома и астролога. Кстати, астрологией Кеплер занимался долгие годы, но относился к этому занятию, конечно, не как к основному виду своей деятельности. Как и следовало ожидать, его гороскопы далеко не всегда предсказывали события, происходившие в действительности.

Умер Кеплер 15 ноября 1630 года в Регенсбурге, куда он прибыл, чтобы получить хотя бы часть денег, которые ему задолжала императорская казна. Но он не успел ничего добиться, т.к. по пути в Регенсбург простудился и вскоре умер.

Еще в глубокой древности было замечено, что в отличие от звезд, которые неизменно сохраняют свое взаимное расположение в пространстве в течение столетий, планеты описывают среди звезд сложнейшие траектории. Для объяснения петлеобразного движения планет древнегреческий ученый К. Пталомей (II в.н. э.), считая Землю расположенной в центре Вселенной, предположил, что каждая из планет движется по малому кругу (эпициклу), центр которого равномерно движется по большому кругу, в центре которого находится Земля. Эта концепция получила название пталомеевой или геоцентрической системой мира.

В начале XVI века польским астрономом Н. Коперником (1473–1543) обоснована гелиоцентрическая система, согласно которой движения небесных тел объясняются движением Земли (а также других планет) вокруг Солнца и суточным вращением Земли. Теория наблюдения Коперника воспринималась как занимательная фантазия. В XVI в. это утверждение рассматривалось церковью как ересь. Известно, что Дж. Бруно, открыто выступивший в поддержку гелиоцентрической системы Коперника, был осужден инквизицией и сожжен на костре.

Закон всемирного тяготения был открыт Ньютоном на основе трех законов Кеплера.

Первый закон Кеплера . Все планеты движутся по эллипсам, в одном из фокусов которого находится Солнце (рис. 7.6).


Рис. 7.6


Второй закон Кеплера . Радиус-вектор планеты описывает в равные времена равные площади (рис. 7.7).
Почти все планеты (кроме Плутона) движутся по орбитам, близким к круговым. Для круговых орбит первый и второй законы Кеплера выполняются автоматически, а третий закон утверждает, что T 2 ~ R 3 (Т – период обращения; R – радиус орбиты).

Ньютон решил обратную задачу механики и из законов движения планет получил выражение для гравитационной силы:

(7.5.2)

Как нам уже известно, гравитационные силы являются силами консервативными. При перемещении тела в гравитационном поле консервативных сил по замкнутой траектории работа равна нулю.
Свойство консервативности гравитационных сил позволило нам ввести понятие потенциальной энергии.

Потенциальная энергия тела массы m , расположенного на расстоянии r от большого тела массы М , есть

Таким образом, в соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной .

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела.

При E < 0 тело не может удалиться от центра притяжения на расстояние r 0 < r max . В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы) (рис.7.8)

Рис. 7.8

Период обращения небесного тела по эллиптической орбите равен периоду обращения по круговой орбите радиуса R , где R – большая полуось орбиты.

При E = 0 тело движется по параболической траектории. Скорость тела на бесконечности равна нулю.

При E < 0 движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.

Первой космической скоростью называется скорость движения тела по круговой орбите вблизи поверхности Земли. Для этого, как следует из второго закона Ньютона, центробежная сила должна уравновешиваться гравитационной силой:

Отсюда
Второй космической скоростью называется скорость движе-ния тела по параболической траектории. Она равна минимальной скорости, которую нужно сообщить телу на поверхности Земли, чтобы оно, преодолев земное притяжение, стало искусственным спутником Солнца (искусственная планета). Для этого необходимо, чтобы кинетическая энергия была не меньше работы по преодолению тяготения Земли:

Отсюда
Третья космическая скорость – скорость движения, при которой тело может покинуть пределы Солнечной системы, преодолев притяжение Солнца:

υ 3 = 16,7·10 3 м/c.

На рисунке 7.8, показаны траектории тел с различными космическими скоростями.

В мире атомов и элементарных частиц гравитационные силы пренебрежимо малы по сравнению с другими видами силового взаимодействия между частицами. Очень непросто наблюдать гравитационное взаимодействие и между различными окружающими нас телами, даже если их массы составляют многие тысячи килограмм. Однако именно гравитация определяет поведение «больших» объектов, таких, как планеты, кометы и звезды, именно гравитация удерживает всех нас на Земле.

Гравитация управляет движением планет Солнечной системы. Без нее планеты, составляющие Солнечную систему, разбежались бы в разные стороны и потерялись в безбрежных просторах мирового пространства.

Закономерности движения планет с давних пор привлекали внимание людей. Изучение движения планет и строения Солнечной системы и привело к созданию теории гравитации - открытию закона всемирного тяготения.

С точки зрения земного наблюдателя планеты движутся по весьма сложным траекториям (рис. 1.24.1). Первая попытка создания модели Вселенной была предпринята Птолемеем (~ 140 г.). В центре мироздания Птолемей поместил Землю, вокруг которой по большим и малым кругам, как в хороводе, двигались планеты и звезды.

Геоцентрическая система Птолемея продержалась более 14 столетий и только в середине XVI века была заменена гелиоцентрической системой Коперника. В системе Коперника траектории планет оказались более простыми. Немецкий астроном Иоганн Кеплер в начале XVII века на основе системы Коперника сформулировал три эмпирических закона движения планет Солнечной системы. Кеплер использовал результаты наблюдений за движением планет датского астронома Тихо Браге.

Первый закон Кеплера (1609 г.):

Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце .

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка P траектории называется перигелием , точка A , наиболее удаленная от Солнца - афелием . Расстояние между афелием и перигелием - большая ось эллипса.

Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым.

Второй закон Кеплера (1609 г.):

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Рис. 1.24.3 иллюстрирует 2-й закон Кеплера.

Второй закон Кеплера эквивалентен закону сохранения момента импульса. На рис. 1.24.3 изображен вектор импульса тела и его составляющие и Площадь, описываемая радиус-вектором за малое время Δt , приближенно равна площади треугольника с основанием r Δθ и высотой r :

Здесь - угловая скорость.

Момент импульса L по абсолютной величине равен произведению модулей векторов и :

Из этих отношений следует:

Поэтому, если по второму закону Кеплера , то и момент импульса L при движении остается неизменным.

В частности, поскольку скорости планеты в перигелии и афелии направлены перпендикулярно радиус-векторам и из закона сохранения момента импульса следует:

Третий закон Кеплера (1619 г.):

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит:

Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 %.

На рис. 1.24.4 изображены две орбиты, одна из которых - круговая с радиусом R , а другая - эллиптическая с большой полуосью a . Третий закон утверждает, что если R = a , то периоды обращения тел по этим орбитам одинаковы.

Несмотря на то, что законы Кеплера явились важнейшим этапом в понимании движения планет, они все же оставались только эмпирическими правилами, полученными из астрономических наблюдений. Законы Кеплера нуждались в теоретическом обосновании. Решающий шаг в этом направлении был сделан Исааком Ньютоном, открывшим в 1682 году закон всемирного тяготения :

где M и m - массы Солнца и планеты, R - расстояние между ними, G = 6,67·10 -11 Н·м 2 /кг 2 - гравитационная постоянная. Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. В частности, уже говорилось, что сила тяжести, действующая на тела вблизи поверхности Земли, имеет гравитационную природу.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T 2 ~ R 3 , где Т - период обращения, R - радиус орбиты. Отсюда можно получить зависимость гравитационной силы от расстояния. При движении планеты по круговой траектории на нее действует сила, которая возникает за счет гравитационного взаимодействия планеты и Солнца:

Если T 2 ~ R 3 , то

Свойство консервативности гравитационных сил позволяет ввести понятие потенциальной энергии . Для сил всемирного тяготения удобно потенциальную энергию отсчитывать от бесконечно удаленной точки.

Потенциальная энергия тела массы m , находящегося на расстоянии r от неподвижного тела массы M , равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

Математическая процедура вычисления потенциальной энергии тела в гравитационном поле состоит в суммировании работ на малых перемещениях (рис. 1.24.5).

Закон всемирного тяготения применим не только к точеным массам, но и к сферически симметричным телам . Работа гравитационной силы на малом перемещении есть:

Полная работа при перемещении тела массой m из начального положения в бесконечность находится суммированием работ ΔA i на малых перемещениях:

В пределе при Δr i → 0 эта сумма переходит в интеграл. В результате вычислений для потенциальной энергии получается выражение

Знак «минус» указывает на то, что гравитационные силы являются силами притяжения.

Если тело находится в гравитационном поле на некотором расстоянии r от центра тяготения и имеет некоторую скорость υ, его полная механическая энергия равна

В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1.24.6).

При E = E 1 < 0 тело не может удалиться от центра притяжения на расстояние r > r max . В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

При E = E 2 = 0 тело может удалиться на бесконечность. Скорость тела на бесконечности будет равна нулю. Тело движется по параболической траектории .

При E = E 3 > 0 движение происходит по гиперболической траектории . Тело удаляется на бесконечность, имея запас кинетической энергии.

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

Первой космической скоростью называется скорость движения спутника по круговой орбите вблизи поверхности Земли.

Эту скорость необходимо набрать, чтобы преодолеть притяжение Земли и вывести тело (например, спутник) на орбиту Земли.

Второй космической скоростью называется минимальная скорость, которую нужно сообщить космическому кораблю у поверхности Земли, чтобы он, преодолев земное притяжение, превратился в искусственный спутник Солнца (искусственная планета). При этом корабль будет удаляться от Земли по параболической траектории.

Рис. 1.24.7 иллюстрирует космические скорости. Если скорость космического корабля равна υ 1 = 7.9·10 3 м/с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей. При начальных скоростях, превышающих υ 1 , но меньших υ 2 = 11,2·10 3 м/с, орбита корабля будет эллиптической. При начальной скорости υ 2 корабль будет двигаться по параболе, а при еще большей начальной скорости - по гиперболе.

Рисунок 1.24.7.

Космические скорости. Указаны скорости вблизи поверхности Земли. 1: υ = υ 1 - круговая траектория; 2: υ 1 < υ < υ 2 - эллиптическая траектория; 3: υ = 11,1·10 3 м/с - сильно вытянутый эллипс; 4: υ = υ 2 - параболическая траектория; 5: υ > υ 2 - гиперболическая траектория; 6: траектория Луны

Третья космическая скорость равна примерно 16,6·10 3 м/сек (при запуске на высоте 200 км над земной поверхностью) и необходима для преодоления гравитации сначала Земли, а затем и Солнца и выхода за пределы Солнечной системы. Сейчас два искусственных спутника развили такую скорость Пионер-10 и Пионер-11, запущенные 2 марта 1972 и 6 апреля 1973 года соответственно. В данный момент аппараты покинули пределы Солнечной системы.

И. Кеплер всю свою жизнь пытался доказать, что наша Солнечная система - это какое-то мистическое искусство. Изначально он пытался доказать, что устройство системы имеет сходство с правильными многогранниками из древнегреческой геометрии. Во времена Кеплера было известно о существовании шести планет. Считалось, что они помещаются в хрустальные сферы. По утверждению ученого, эти сферы располагались таким образом, что между соседствующими точно вписываются многогранники правильной формы. Между Юпитером и Сатурном поместился куб, вписанный во внешнюю среду, в которую вписана сфера. Между Марсом и Юпитером находится тетраэдр, и т.п. После долгих лет наблюдений за небесными объектами, появились законы Кеплера, а свою теорию о многогранниках он опроверг.

Законы

На смену геоцентрической Птолемеевой системе мира пришла система гелиоцентрического типа, созданная Коперником. Еще позже, Кеплер выявил вокруг Солнца.

После многолетних наблюдений за планетами появились три закона Кеплера. Рассмотрим их в статье.

Первый

Согласно первому закону Кеплера, все планеты нашей системы движутся по замкнутой кривой, называемой эллипсом. Наше светило располагается в одном из фокусов эллипса. Всего их два: это две точки внутри кривой, сумма расстояний от которых до любой точки эллипса постоянна. После длительных наблюдений ученый смог выявить, что орбиты всех планет нашей системы располагаются почти в одной плоскости. Некоторые небесные тела двигаются по орбитам-эллипсам, близким к окружности. И только Плутон с Марсом двигаются по более вытянутым орбитам. Исходя из этого, первый закон Кеплера получил название закона эллипсов.

Второй закон

Изучение движения тел позволяет ученому установить, что больше в тот период, когда она находится ближе к Солнцу, и меньше тогда, когда она находится на максимальном расстоянии от Солнца (это точки перигелия и афелия).

Второй закон Кеплера говорит о следующем: каждая планета перемещается в плоскости, проходящей через центр нашего светила. В одно и то же время радиус-вектор, соединяющий Солнце и исследуемую планету, описывает равные площади.

Таким образом, ясно, что тела движутся вокруг желтого карлика неравномерно, а имея в перигелии максимальную скорость, а в афелии - минимальную. На практике это видно по движению Земли. Ежегодно в начале января наша планета, во время прохождения через перигелий, перемещается быстрее. Из-за этого движение Солнца по эклиптике происходит быстрее, чем в другое время года. В начале июля Земля движется через афелий, из-за чего Солнце по эклиптике перемещается медленнее.

Третий закон

По третьему закону Кеплера, между периодом обращения планет вокруг светила и ее средним расстоянием от него устанавливается связь. Этот закон ученый применил ко всем планетам нашей системы.

Объяснение законов

Законы Кеплера смогли объяснить только после открытия Ньютоном закона тяготения. По нему физические объекты принимают участие в гравитационном взаимодействии. Оно обладает всеобщей универсальностью, которой подвержены все объекты материального типа и физические поля. По утверждению Ньютона, два неподвижных тела действуют взаимно друг с другом с силой, пропорциональной произведению их веса и обратно пропорциональной квадрату промежутков между ними.

Возмущенное движение

Движением тел нашей Солнечной системы управляет сила притяжения желтого карлика. Если бы тела притягивались только силой Солнца, то планеты совершали бы движения вокруг него точно по законам движения Кеплера. Данный вид перемещения называют невозмущенным или кеплеровским.

В действительности все объекты нашей системы притягиваются не только нашим светилом, но и друг другом. Поэтому ни одно из тел не может перемещаться точно по эллипсу, гиперболе или по кругу. Если тело отклоняется во время движения от законов Кеплера, то это называется возмущениями, а само движение - возмущенным. Именно оно считается реальным.

Орбиты небесных тел не являются неподвижными эллипсами. Во время притяжения другими телами, происходит изменение эллипса орбиты.

Вклад И. Ньютона

Исаак Ньютон смог вывести из законов движения планет Кеплера закон всемирного тяготения. Для решения космическо-механических задач Ньютон использовал именно всемирное тяготение.

После Исаака прогресс в области небесной механики заключался в развитии математической науки, применяемой для решения уравнений, выражающих законы Ньютона. Этот ученый смог установить, что гравитация планеты определяется расстоянием до нее и массой, а вот такие показатели, как температура и состав, не оказывают никакого влияния.

В своей научной работе Ньютон показал, что третий кеплеровский закон не совсем точен. Он показал, что при подсчетах важно учитывать массу планеты, так как движение и вес планет связаны. Это гармоническая комбинация показывает связь между кеплеровскими законами и законом тяготения, выявленным Ньютоном.

Астродинамика

Применение законов Ньютона и Кеплера стало основой появления астродинамики. Это раздел небесной механики, изучающий движение космических тел, созданных искусственно, а именно: спутников, межпланетных станций, различных кораблей.

Астродинамика занимается расчетами орбит космических кораблей, а также определяет, по каким параметрам производить пуск, на какую орбиту выводить, какие необходимо провести маневры, планированием гравитационного воздействия на корабли. И это далеко не все практические задачи, которые ставятся перед астродинамикой. Все полученные результаты применяются при выполнении самых разных космических миссий.

С астродинамикой тесно связана небесная механика, которая изучает движение естественных космических тел под действием силы тяготения.

Орбиты

Под орбитой понимают траекторию движения точки в заданном пространстве. В небесной механике принято считать, что траектория тела в гравитационном поле другого тела обладает значительно большей массой. В прямоугольной системе координат, траектория может иметь форму конического сечения, т.е. быть представлена параболой, эллипсом, кругом, гиперболой. При этом фокус будет совпадать с центром системы.

На протяжении длительного времени считалось, что орбиты должны быть круглыми. Довольно долго ученые пытались подобрать именно круговой вариант перемещения, но у них не получалось. И только Кеплер смог объяснить, что планеты перемещаются не по круговой орбите, а по вытянутой. Это позволило открыть три закона, которые смогли описать движение небесных тел по орбите. Кеплер открыл следующие элементы орбиты: форму орбиты, ее наклон, положение плоскости орбиты тела в пространстве, размер орбиты, привязку по времени. Все эти элементы определяют орбиту независимо от ее формы. При расчетах основной координатной плоскостью может быть плоскость эклиптики, галактики, планетарного экватора и т.д.

Многочисленные исследования показывают, что по геометрической форме орбиты могут быть эллиптическими и округлыми. Есть деление на замкнутые и незамкнутые. По углу наклона орбиты к плоскости земного экватора, орбиты могут быть полярными, наклонными и экваториальными.

По периоду обращения вокруг тела, орбиты могут быть синхронными или солнечно-синхронными, синхронно-суточными, квазисинхронными.

Как говорил Кеплер, все тела имеют определенную скорость движения, т.е. орбитальную скорость. Она может быть постоянной на протяжении всего обращения вокруг тела или же изменяться.