Меню
Бесплатно
Главная  /  Лекарства и витамины по алфавиту  /  Определение центра масс тела произвольной формы. Центр масс: понятие, расчёт и основные положения

Определение центра масс тела произвольной формы. Центр масс: понятие, расчёт и основные положения

Снова рассмотрим ту же систему материальных точек. Построим радиус-вектор по следующему правилу:

где - радиус-вектор - той материальной точки системы, а - ее масса.

Радиус-вектор определяет положение в пространстве центра инерции (центра масс) системы.

Вовсе не обязательно, что в центре масс системы окажется какая-то материальная точка.

Пример. Найдем центр масс системы, состоящей из двух маленьких шариков - материальных точек, соединенных невесомым стержнем (рис. 3.29). Такая система тел называется гантелей.

Рис. 3.29. Центр масс гантели

Из рис. видно, что

Подставляя в эти равенства выражение для радиус-вектора центра масс

Отсюда следует, что центр масс лежит на прямой, проходящей через центры шаров. Расстояния l 1 и l 2 между шарами и центром масс равны соответственно

Центр масс ближе к тому шарику, масса которого больше, что видно из отношения:

Определим, с какой скоростью движется центр инерции системы. Дифференцируем по времени обе части:

В числителе полученного выражения в правой части стоит сумма импульсов всех точек, то есть импульс системы. В знаменателе стоит полная масса системы

Мы получили, что скорость центра инерции связана с импульсом системы и ее полной массой таким же соотношением, какое справедливо для материальной точки:

Видео 3.11. Движение центра масс двух одинаковых тележек, связанных пружиной.

Центр масс замкнутой системы движется всегда с постоянной скоростью, поскольку импульс такой системы сохраняется.

Если продифференцировать теперь выражение для импульса системы по времени и учесть, что производная импульса системы есть равнодействующая внешних сил, то получим уравнение движения центра масс системы в общем случае:

Видно, что

Центр масс системы движется точно так же, как двигалась бы материальная точка с массой, равной массе всех частиц системы, под действием векторной суммы всех внешних сил, приложенных к системе.

Если имеется система материальных точек, внутреннее расположение и движение которых нас не интересует, мы вправе считать ее материальной точкой с координатами радиус-вектора центра инерции и массой, равной сумме масс материальных точек системы.

Если связать с центром масс замкнутой системы материальных точек (частиц) систему отсчета (ее называют системой центра масс ), то полный импульс всех частиц в такой системе окажется равным нулю. Таким образом, в системе центра масс замкнутая система частиц как целое покоится, и существует только движение частиц относительно центра масс. Поэтому ясно выявляются свойства внутренних процессов, протекающих в замкнутой системе.

В случае, когда системой является тело с непрерывным распределением масс, определение центра масс остается по существу тем же. Окружаем произвольную точку в нашем теле небольшим объемом . Масса, заключенная в этом объеме, равна , где - плотность вещества тела, которая может и не быть постоянной по его объему. Сумма по всем таким элементарным массам заменяется теперь на интеграл по всему объему тела, так что для положения центра масс тела получается выражение

Если вещество тела однородно, плотность его постоянна, и ее можно вынести из-под знака интеграла, так что она сократится в числителе и знаменателе. Тогда выражение для радиус-вектора центра масс тела принимает вид

где - объем тела.

И в случае непрерывного распределения масс справедливо утверждение, что

Центр масс твердого тела движется так, как двигалась бы материальная точка с массой, равной массе тела, под действием векторной суммы всех внешних сил,приложенных к телу.

Пример . Если снаряд взрывается в некоторой точке своей параболической траектории, то осколки летят по самым различным траекториям, но его центр масс продолжает движение по параболе.

Любая механическая система так же, как и любое тело обладает такой замечательной точкой как центр масс. Она есть у человека, автомобиля, Земли, Вселенной, т. е. у любого предмета. Очень часто эту точку путают с центром тяжести. Несмотря на то что они часто друг с другом совпадают, у них есть определенные различия. Можно сказать, что центр масс механической системы - это более обширное понятие по сравнению с ее центром тяжести. Что же это такое и как найти его местоположение в системе или в отдельно взятом объекте? Об этом как раз и пойдет речь в нашей статье.

Понятие и формула определения

Центр масс представляет собой некую точку пересечения прямых, параллельно которым воздействуют внешние силы, вызывая при этом поступательное движение данного объекта. Это утверждение является справедливым как для отдельного взятого тела, так и для группы элементов имеющих между собой определенную связь. Центр масс всегда совпадает с центром тяжести и является одной из важнейших геометрических характеристик распределения всех масс в исследуемой системе. Обозначим через m i массу каждой точки системы (i = 1,…,n). Положение любой из них можно описать тремя координатами: x i , у i , z i . Тогда очевидно, что масса тела (всей системы) будет равна сумме масс ее частиц: М=∑m i . А сам центр масс (O) можно будет определить через следующие соотношения:

X o = ∑m i *x i /M;

Y o = ∑m i *y i /M;

Z o = ∑m i *z i /M.

Чем же интересна данная точка? Одно из главных ее достоинств - это то, что она характеризует движение объекта как целого. Это свойство позволяет использовать центр массы в тех случаях, когда тело имеет большие габариты или неправильную геометрическую форму.

Что следует знать для нахождения данной точки


Практическое применение

Рассматриваемое понятие широко используется в различных областях механики. Обычно центр масс используют в роли центра тяжести. Последний представляет собой такую точку, подвесив объект, за который, можно будет наблюдать неизменность его положения. Центр масс системы нередко рассчитывают при проектировании различных деталей в машиностроении. Он также играет большую роль в обеспечении равновесия, что можно применить, к примеру, при создании альтернативных вариантов мебели, транспортных средств, в строительстве, в складском хозяйстве и т. д. Без знания основных принципов, по которым определяется центр тяжести, было бы сложно организовать безопасность работ с массивными грузами и любыми габаритными предметами. Надеемся, что наша статья оказалась полезной и ответила на все вопросы по данной теме.

Термин «центр масс» используется не только в механике и в расчетах движения но и обыденной жизни. Просто люди не всегда задумываются о том, какие же законы природы проявляются в той или иной ситуации. Например, фигуристы в парном катании активно используют центр масс системы, когда раскручиваются, взявшись за руки.

Понятие центра масс также применяется при проектировке кораблей. Необходимо учесть не просто два тела, а огромное их количество и все привести к единому знаменателю. Ошибки в расчетах означают отсутствие устойчивости корабля: в одном случае он будет чрезмерно погружен в воду, рискуя пойти ко дну при самых незначительных волнах; а в другом слишком приподнят над уровнем моря, создавая опасность переворота на бок. Кстати, именно поэтому каждая вещь на борту должна быть на своем месте, предусмотренным расчетами: наиболее массивные в самом низу.

Центр масс используется не только в отношении небесных тел и проектировании механизмов, но и при изучении «поведения» частиц микромира. К примеру, многие из них рождаются парами (электрон-позитрон). Обладая изначальным вращением и подчиняясь законам притяжения/отталкивания, они могут быть рассмотрены как система с общим центром масс.

Определение

При рассмотрении системы частиц, часто удобно найти такую точку, которая характеризует положение и движение рассматриваемой системы как единого целого. Такой точкой является центр масс .

Если у нас две частицы одинаковой массы, то такая точка находится посередине между ними.

Координаты центра масс

Допустим, что две материальные точки, имеющие массы $m_1$ и $m_2$ находятся на оси абсцисс и имеют координаты $x_1$ и $x_2$. Расстояние ($\Delta x$) между этими частицами равно:

\[\Delta x=x_2-x_1\left(1\right).\]

Определение

Точку С (рис.1), делящую расстояние между этими частицами на отрезки, обратно пропорциональные массам частиц называют центром масс этой системы частиц.

В соответствии с определением для рис.1 имеем:

\[\frac{l_1}{l_2}=\frac{m_2}{m_1}\left(2\right).\]

где $x_c$ - координата центра масс, то получаем:

Из формулы (4) получим:

Выражение (5) легко обобщается для множества материальных точек, которые расположены произвольным образом. При этом абсцисса центра масс равна:

Аналогично получают выражения для ординаты ($y_c$) центра масс и его аппликаты ($z_c$):

\ \

Формулы (6-8) совпадают с выражениями, определяющими центр тяжести тела. В том случае, если размеры тела малы в сравнении с расстоянием до центра Земли, центр тяжести считают совпадающим с центром масс тела. В большинстве задач центр тяжести совпадает с центром масс тела.

Если положение N материальных точек системы задано в векторной форме, то радиус - вектор, определяющий положение центра масс находим как:

\[{\overline{r}}_c=\frac{\sum\limits^N_{i=1}{m_i{\overline{r}}_i}}{\sum\limits^N_{i=1}{m_i}}\left(9\right).\]

Движение центра масс

Выражение для скорости центра масс (${\overline{v}}_c=\frac{d{\overline{r}}_c}{dt}$) имеет вид:

\[{\overline{v}}_c=\frac{m_1{\overline{v}}_1+m_2{\overline{v}}_2+\dots +m_n{\overline{v}}_n}{m_1+m_2+\dots +m_n}=\frac{\overline{P}}{M}\left(10\right),\]

где $\overline{P}$ - суммарный импульс системы частиц; $M$ масса системы. Выражение (10) справедливо при движениях со скоростями которые существенно меньше скорости света.

Если система частиц является замкнутой, то сумма импульсов ее частей не изменяется. Следовательно, скорость центра масс при этом величина постоянная. Говорят, что центр масс замкнутой системы перемещается по инерции, то есть прямолинейно и равномерно, и это движение не зависимо от движения составных частей системы. В замкнутой системе могут действовать внутренние силы, в результате их действия части системы могут иметь ускорения. Но это не оказывает влияния на движение центра масс. Под действием внутренних сил скорость центра масс не изменяется.

Примеры задач с решением

Пример 1

Задание. Запишите координаты центра масс системы из трех шариков, которые находятся в вершинах и центра равностороннего треугольника, сторона которого равна $b\ (м)$ (рис.2).

Решение. Для решения задачи используем выражения, определяющие координаты центра масс:

\ \

Из рис.2 мы видим, что абсциссы точек:

\[\left\{ \begin{array}{c} m_1=2m,\ \ x_1=0;;\ \ \\ {\rm \ }m_2=3m,\ \ \ \ x_2=\frac{b}{2};; \\ m_3=m,\ \ x_3=\frac{b}{2};; \\ m_4=4m,\ \ x_4=b. \end{array} \right.\left(2.3\right).\]

Тогда абсцисса центра масса равна:

Найдем ординаты точек.

\[ \begin{array}{c} m_1=2m,\ \ y_1=0;;\ \ \\ {\rm \ }m_2=3m,\ \ \ \ y_2=\frac{b\sqrt{3}}{2};; \\ m_3=m,\ \ y_3=\frac{b\sqrt{3}}{6};; \\ m_4=4m,\ \ y_4=0. \end{array} \left(2.4\right).\]

Для нахождения ординаты $y_2$ вычислим, чему равна высота в равностороннем треугольнике:

Ординату $y_3$ найдем, помня, что медианы в равностороннем треугольнике точкой пересечения делятся в отношении 2:1 от вершины, получаем:

Вычислим ординату центра масс:

Ответ. $x_c=0,6b\ {\rm \ }{\rm м}$; $y_c=\frac{b\sqrt{3}\ }{6}$ м

Пример 2

Задание. Запишите закон движения центра масс.

Решение. Закон изменения импульса системы частиц является законом движения центра масс. Из формулы:

\[{\overline{v}}_c=\frac{\overline{P}}{M}\to \overline{P}=M{\overline{v}}_c\left(2.1\right)\]

при постоянной массе $M$ продифференцировав обе части выражения (2.1), получим:

\[\frac{d\overline{P}}{dt}=M\frac{d{\overline{v}}_c}{dt}\left(2.2\right).\]

Выражение (2.2) означает, что скорость изменения импульса системы равняется произведению массы системы на ускорение ее центра масс. Так как

\[\frac{d\overline{P}}{dt}=\sum\limits^N_{i=1}{{\overline{F}}_i\left(2.3\right),}\]

В соответствии с выражением (2.4) получаем, что центр масс системы движется так, как двигалась бы одна материальная точка массы M, если на нее действует сила, равная сумме всех внешних сил, действующих на частицы, которые входят в рассматриваемую систему. Если $\sum\limits^N_{i=1}{{\overline{F}}_i=0,}$ то центр масс движется равномерно и прямолинейно.

Инструкция

Следует учитывать, что положение центра масс напрямую зависит от того, каким образом распределена по объему тела его масса. Центр масс может даже не находиться в самом теле, примером такого объекта может служить однородное кольцо, у которого центр масс находится в его геометрическом центре. То есть – . При расчетах центр масс можно расценивать математической точкой, в которой сосредоточена вся масса тела.

Здесь R.ц.м. – радиус-вектор центра масс, mi – масса i-той точки, ri – радиус-вектор i-той точки системы. На практике во многих случаях легко найти центр масс, если предмет имеет некую строгую геометрическую форму. Например, у однородного стержня он находится точно посередине. У параллелограмма - на пересечении диагоналей, у треугольника это точка , а у правильного многоугольника центр масс находится в центре поворотной симметрии.

Для более сложных тел задача расчета усложняется, в этом случае необходимо разбить объект на однородные объемы. Для каждого из них отдельно центры масс, после чего найденные значения подставляются в соответствующие формулы и находится итоговое значение.

На практике необходимость определения центра масс (центра тяжести) обычно связана с конструкторскими работами. Например, при проектировании судна важно обеспечить его остойчивость. Если центр тяжести будет находиться очень , то может опрокинуться. Как рассчитать нужный параметр для такого сложного объекта, как судно? Для этого находятся центры тяжести его отдельных элементов и агрегатов, после чего найденные значения складываются с учетом их месторасположения. При конструировании центр тяжести обычно стараются расположить как можно ниже, поэтому наиболее тяжелые агрегаты располагают в самом низу.

Источники:

  • Центр масс
  • Решение задач по физике

Центр масс – важнейшая геометрическая и техническая характеристика тела. Без вычисления его координат невозможно представить конструирование в машиностроении, решение задач строительства и архитектуры. Точное определение координат центра массы производится с помощью интегрального исчисления.

Инструкция

Начинать всегда следует от , постепенно переходя к более сложным ситуациям. Исходите из того, что определению подлежит центр массы непрерывной плоской фигуры D, которой ρ постоянна и равномерно распределена в ее пределах. Аргумент х изменяется от а до b, y от c до d. Разбейте фигуру сеткой вертикальных (x=x(i-1), x=xi (i=1,2,…,n)) и горизонтальных прямых (y=y(j-1), y=xj (j=1,2,…,m)) на элементарные прямоугольники с основаниями ∆хi=xi-x(i-1) и высотами ∆yj=yj-y(j-1) (см. рис. 1). При этом середину элементарного отрезка ∆хi найдите как ξi=(1/2), а высоту ∆yj как ηj=(1/2). Поскольку плотность распределяется равномерно, то центр массы элементарного прямоугольника совпадет с ее геометрическим центром. То есть Хцi=ξi, Yцi=ηj.

Массу М плоской фигуры (если она неизвестна), вычислите как произведение на площадь. Замените элементарную площадь на ds=∆хi∆yj=dxdy. Представьте ∆mij в виде dM=ρdS=ρdxdy и получите ее массу по формуле, приведенной на рисунке. 2a. При малых приращениях считайте, что ∆mij, сосредоточена в материальной точке с координатами Хцi=ξi, Yцi=ηj. Из задач известно, что каждая координата центра масс системы материальных точек равна дроби, числитель которой сумму статических моментов масс mν относительно соответствующей оси, а равен сумме этих масс. Статический момент массы mν, относительно оси 0х равен уν*mν, а относительно 0у хν*mν.

Примените это к рассматриваемой ситуации и получите приблизительные значения статических моментов Јх и Ју в виде Ју≈{∑ξνρ∆xν∆yν}, Јх≈{∑ηνρ∆xν∆yν} (суммирование производилось по ν от 1 до N). Входящие в последнее выражения суммы являются интегральными. Перейдите к пределам от них при ∆хν→0 ∆yν→0 и запишите окончательные (см. рис. 2b). Координаты центра масс находите делением соответствующего статистического момента на общую массу фигуры М.

Методология получения координат центра масс пространственной фигуры G отличается лишь тем, что возникают тройные интегралы, а статические моменты рассматриваются относительно координатных плоскостей. Не следует забывать и что плотность не обязательно постоянна, то есть ρ(x,y,z)≠const. Поэтому окончательный и самйы общий имеет вид (см. рис. 3).

Источники:

  • Пискунов Н.С. Дифференциальное и интегральное исчисления. Т.2., М.: 1976, 576 с., ил.

Закон всемирного тяготения, открытый Ньютоном в 1666 году и опубликованный в 1687 году, гласит, что все тела, обладающие массой, притягиваются друг к другу. Математическая формулировка позволяет не только установить сам факт взаимного притяжения тел, но и измерить его силу.

Инструкция

Еще до Ньютона многие высказывали предположения о существовании всемирного тяготения. С самого начала им было очевидно, что притяжение между любыми двумя телами должно зависеть от их массы и ослабевать с расстоянием. Иоганн Кеплер, первым описавший эллиптические орбиты Солнечной системы, считал, что Солнце притягивает с силой, обратно пропорциональной расстоянию.

Окончательно закон всемирного тяготения формулируется так: любые два тела, обладающие массой, взаимно притягиваются, и сила их притяжения равна

F = G* ((m1*m2)/R^2),

где m1 и m2 - массы тел, R - расстояние , G - гравитационная постоянная.

Если тело, участвующее в тяготении, обладает приблизительно сферической формой, то расстояние R следует отмерять не от его поверхности, а от центра масс. Материальная точка с той же массой, находящаяся точно в центре, порождала бы точно такую же силу притяжения.

В частности, это значит, что, например, при расчете силы, с которой Земля притягивает стоящего на ней , расстояние R равно не нулю, а радиусу . На самом деле оно равно расстоянию между центром Земли и центром тяжести человека, но этой разницей можно пренебречь без потери точности.

Гравитационное притяжение всегда взаимно: не только Земля притягивает человека, но , в свою очередь, притягивает Землю. Из-за огромной разницы между массой человека планеты это незаметно. Аналогично и при расчетах траекторий космических аппаратов обычно пренебрегают тем, что аппарат притягивает к себе планеты и кометы.

Однако если массы взаимодействующих объектов сравнимы, то их взаимное притяжение становится заметным для всех участников. Например, с точки зрения физики не вполне верно говорить, что Луна вращается вокруг Земли. В действительности Луна и Земля вращаются вокруг общего центра масс. Поскольку наша планета намного больше своего естественного , то этот центр находится внутри нее, но все же с центром самой Земли не совпадает.

Видео по теме

Источники:

  • Классная физика для любознательных - закон всемирного тяготения

Математика и физика, возможно, самые удивительные науки из доступных человеку. Описывая мир через вполне определенные и поддающиеся расчету законы, ученые могут «на кончике пера» получить значения, измерить которые, на первый взгляд, кажется невозможным.

Инструкция

Один из базовых законов физики – закон всемирного тяготения. Он гласит, что все тела притягиваются друг к другу с силой, равной F=G*m1*m2/r^2. При этом G является определенной константой (будет указана непосредственно во время расчета), m1 и m2 массы тел, а r –расстояние между ними.

Массу Земли можно вычислить на основе эксперимента. При помощи маятника и секундомера можно рассчитать ускорение свободного падения g (шаг будет опущен за несущественностью), равное 10 м/c^2. Согласно второму закону Ньютона F можно представить как m*a. Поэтому, для тела, притягивающегося к Земле: m2*a2=G*m1*m2/r^2, где m2 – масса тела, m1 – масса Земли, a2=g. После преобразований (сокращения m2 в обеих частях, переноса m1 влево, а a2 - вправо) уравнение примет следующий вид: m1=(ar)^2/G. Подстановка значений дает m1=6*10^27

Расчет массы Луны опирается на правило: от тел до центра масс системы обратно пропорциональны массам тел. Известно, что Земля и Луна обращаются вокруг некоторой точки (Цм), причем расстояния от центров до этой точки как 1/81,3. Отсюда Мл=Мз/81,3=7.35*10^25.

Дальнейшие вычисления опираются на 3-ий закон Кепплера, согласно которому (T1/T2)^2*(M1+Mc)/(M2+Mc)=(L1/L2)^3, где T – период обращения небесного тела вокруг Солнца , L – расстояние до последнего, M1, M2 и Mc – массы двух небесных тел и , соответственно. Составив уравнения для двух систем ( +луна – / земля - луна) можно увидеть, что одна часть уравнения получается общей, а значит, вторые можно приравнять.

Расчетной формулой в наиболее общем виде является Lз^3/(Tз^2*(Mc+Мз)=Lл^3/(Tл^2*(Mз+Мл). Массы небесных тел были вычислены теоретически, периоды обращения находятся практически, для расчета L используются исчисления либо практические методы. После упрощения и подстановки необходимых значений уравнение примет вид: Мс/Мз+Мл=329.390. Отсюда Мс=3,3*10^33.

Кинетическая энергия – это энергия механической системы, которая зависит от скоростей движения каждой из ее точек. Другими словами, кинетическая энергия представляет собой разницу между полной энергией и энергией покоя рассматриваемой системы, та часть полной энергии системы, которая обусловлена движением. Кинетическая энергия делится на энергию поступательного и вращательного движения. Единицей измерения кинетической энергии в системе СИ является Джоуль.

Инструкция

В случае поступательного движения все точки системы (тела) имеют одинаковые скорости движения, которые равны скорости движения центра масс тела. При этом кинетическая системы Тпост равна:
Tпост = ? (mk Vс2)/2,
где mk –масса тела, Vс – центра масс.Таким образом, при поступательном тела кинетическая энергия равна произведению массы тела на квадрат скорости центра масс, деленному на два. При этом значение кинетической не зависит от движения.