Меню
Бесплатно
Главная  /  Осложнения  /  Кровь состав функции обмен. Общие свойства и функции крови. Кровь под микроскопом

Кровь состав функции обмен. Общие свойства и функции крови. Кровь под микроскопом

Нормальная жизнедеятельность клеток организма возможна только при условии постоянства его внутренней среды. Истинной внутренней средой организма является межклеточная (интерстициальная) жидкость, которая непосредственно контактирует с клетками. Однако постоянство межклеточной жидкости во многом определяется составом крови и лимфы, поэтому в широком понимании внутренней среды в ее состав включают: межклеточную жидкость, кровь и лимфу, спиномозговую, суставную и плевральную жидкость . Между , межклеточной жидкостью и лимфой осуществляется постоянный обмен, направленный на обеспечение непрерывного поступления к клеткам необходимых веществ и удаление оттуда продуктов их жизнедеятельности.

Постоянство химического состава и физико-химических свойств внутренней среды называют гомеостазом.

Гомеостаз — это динамическое постоянство внутренней среды, который характеризуется множеством относительно постоянных количественных показателей, получивших название физиологических, или биологических, констант. Эти константы обеспечивают оптимальные (наилучшие) условия жизнедеятельности клеток организма, а с другой — отражают его нормальное состояние.

Важнейшим компонентом внутренней среды организма является кровь. В понятии системы крови по Лангу входят кровь, регулирующий ней рогу моральный аппарат, а также органы, в которых происходит образование и разрушение клеток крови (костный мозг, лимфатические узлы, вилочковая железа, селезенка и печень).

Функции крови

Кровь выполняет следующие функции.

Транспортная функция — заключается в транспорте кровью различных веществ (энергии и информации, в них заключенных) и тепла в пределах организма.

Дыхательная функция — кровь переносит дыхательные газы — кислород (0 2) и углекислый газ (СО?) — как в физически растворенном, так и химически связанном виде. Кислород доставляется от легких к потребляющим его клеткам органов и тканей, а углекислый газ — наоборот от клеток к легким.

Питательная функция — кровь переносит также мигательные вещества от органов, где они всасываются или депонируются, к месту их потребления.

Выделительная (экскреторная) функция — при биологическом окислении питательных веществ, в клетках образуются, кроме СО 2 , другие конечные продукты обмена (мочевина, мочевая кислота), которые транспортируются кровью к выделительным органам: почкам, легким, потовым железам, кишечнику. Кровью осуществляются также транспорт гормонов, других сигнальных молекул и биологически активных веществ.

Терморегулирующая функция — благодаря своей высокой теплоемкости кровь обеспечивает перенос тепла и его перераспределение в организме. Кровью переносится около 70% тепла, образующегося во внутренних органах в кожу и легкие, что обеспечивает рассеяние ими тепла в окружающую среду.

Гомеостатическая функция — кровь участвует в водно- солевом обмене в организме и обеспечивает поддержание постоянства его внутренней среды — гомеостаза.

Защитная функция заключается прежде всего в обеспечении иммунных реакций, а также создании кровяных и тканевых барьеров против чужеродных веществ, микроорганизмов, дефектных клеток собственного организма. Вторым проявлением защитной функции крови являетcя ее участие в поддержании своего жидкого агрегатного состояния (текучести), а также остановке кровотечения при повреждении стенок сосудов и восстановлении их проходимости после репарации дефектов.

Система крови и её функции

Представление о крови как системе создал наш соотечественник Г.Ф. Ланг в 1939 г. В эту систему он включил четыре части:

  • периферическая кровь, циркулирующая по сосудам;
  • органы кроветворения (красный костный мозг, лимфатические узлы и селезенка);
  • органы кроверазрушения;
  • регулирующий нейрогуморальный аппарат.

Система крови представляет собой одну из систем жизнеобеспечения организма и выполняет множество функций:

  • транспортная - циркулируя по сосудам, кровь осуществляет транспортную функцию, которая определяет ряд других;
  • дыхательная — связывание и перенос кислорода и углекислого газа;
  • трофическая (питательная) - кровь обеспечивает все клетки организма питательными веществами: глюкозой, аминокислотами, жирами, минеральными веществами, водой;
  • экскреторная (выделительная) - кровь уносит из тканей «шлаки» — конечные продукты метаболизма: мочевину, мочевую кислоту и другие вещества, удаляемые из организма органами выделения;
  • терморегуляторная — кровь охлаждает энергоемкие органы и согревает органы, теряющие тепло. В организме имеются механизмы, которые обеспечивают быстрое сужение сосудов кожи при понижении температуры окружающего воздуха и расширение сосудов при повышении. Это приводит к уменьшению или увеличению потери тепла, так как плазма состоит на 90-92% из воды и обладает вследствие этого высокой теплопроводностью и удельной теплоемкостью;
  • гомеостатическая - кровь поддерживает стабильность ряда констант гомеостаза — , осмотического давления и др.;
  • обеспечение водно-солевого обмена между кровью и тканями — в артериальной части капилляров жидкость и соли поступают в ткани, а в венозной части капилляров возвращаются в кровь;
  • защитная - кровь является важнейшим фактором иммунитета, т.е. защиты организма от живых тел и генетически чужеродных веществ. Это определяется фагоцитарной активностью лейкоцитов (клеточный иммунитет) и наличием в крови антител, обезвреживающих микробы и их яды (гуморальный иммунитет);
  • гуморальная регуляция - благодаря своей транспортной функции кровь обеспечивает химическое взаимодействие между всеми частями организма, т.е. гуморальную регуляцию. Кровь переносит гормоны и другие биологически активные вещества от клеток, где они образуются, к другим клеткам;
  • осуществление креаторных связей. Макромолекулы, переносимые плазмой и форменными элементами крови, осуществляют межклеточную передачу информации, обеспечивающую регуляцию внутриклеточных процессов синтеза белков, сохранение степени дифференцированности клеток, восстановление и поддержание структуры тканей.

Кровь и лимфу принято называть внутренней средой организма, так как они окружают все клетки и ткани, обеспечивая их жизнедеятельность.В отношении своего происхождения кровь, как и другие жидкости организма, может рассматриваться как морская вода, окружавшая простейшие организмы, замкнутая внутрь и претерпевшая в дальнейшем определенные изменения и усложнения.

Кровь состоит из плазмы и находящихся в ней во взвешенном состоянии форменных элементов (клеток крови). У человека форменные элементы составляют 42,5+-5% для женщин и 47,5+-7% для мужчин. Эта величина называется гематокритный показатель . Циркулирующая в сосудах кровь, органы, в которых происходит образование и разрушение ее клеток, также системы их регуляции объединяются понятием "система крови ".

Все форменные элементы крови являются продуктами жизнедеятельности не самой крови, а кроветворных тканей (органов) - красного костного мозг, лимфатических узлов, селезенки. Кинетика составных частей крови включает следующие этапы: образование, размножение, дифференциация, созревание, циркуляция, старение, разрушение. Таким образом, существует неразрывная связь форменных элементов крови с вырабатывающими и разрушающими их органами, а клеточный состав периферической крови отражает в первую очередь состояние органов кроветворения и кроверазрушения.

Кровь, как ткань внутренней среды, обладает следующими особенности: составные ее части образуются вне ее, межуточное вещество ткани является жидким, основная масса крови находится в постоянном движении, осуществляя гуморальные связи в организме.

При общей тенденции к сохранению постоянства своего морфологического и химического состава, кровь является в то же время одним из наиболее чувствительных индикаторов изменений, происходящих в организме под влиянием как различных физиологических состояний, так и патологических процессов. "Кровь - зеркало организма!"

Основные физиологические функции крови .

Значение крови как важнейшей части внутренней среды организма многообразно. Можно выделить следующие основные группы функций крови:

1.Транспортные функции . Эти функции состоят в переносе необходимых для жизнедеятельности веществ (газов, питательных веществ, метаболитов, гормонов, ферментов и т.п.) Транспортируемые вещества могут оставаться в крови неизмененными, или вступать в те или иные, большей частью, нестойкие, соединения с белками, гемоглобином, другими компонентами и транспортироваться в таком состоянии. В число транспортных входят такие функции, как:

а) дыхательная , заключающаяся в транспорте кислорода из легких к тканям и углекислоты от тканей к легким;

б) питательная , заключающаяся в переносе питательных веществ от органов пищеварения к тканям, а также в переносе их из депо и в депо в зависимости от потребности в данный момент;

в) выделительная (экскреторная ), которая заключается в переносе ненужных продуктов обмена веществ (метаболитов), а также излишних солей, кислых радикалов и воды к местам их выделения из организма;

г) регуляторная , связанная с тем, что кровь является средой, с помощью которой осуществляется химическое взаимодействие отдельных частей организма между собой посредством вырабатываемых тканями или органами гормонов и других биологически активных веществ.

2. Защитные функции крови связаны с тем, что клетки крови осуществляют защиту организма от инфекционно-токсической агрессии. Можно выделить следующие защитные функции:

а) фагоцитарная - лейкоциты крови способны пожирать (фагоцитировать) чужие клетки и инородные тела, попавшие в организм;

б) иммунная - кровь является местом, где находятся различного рода антитела, образующиеся в лимфоцитами в ответ на поступление микроорганизмов, вирусов, токсинов и обеспечивающие приобретенный и врожденный иммунитет.

в) гемостатическая (гемостаз - остановка кровотечения), заключающаяся в способности крови свертываться в месте ранения кровеносного сосуда и тем самым предотвращать смертельное кровотечение.

3. Гомеостатические функции . Заключаются в участии крови и находящихся в ее составе веществ и клеток в поддержании относительного постоянства ряда констант организма. Сюда относятся:

а) поддержание рН ;

б) поддержание осмотического давления ;

в) поддержание температуры внутренней среды.

Правда, последняя функция может быть отнесена и к транспортным, так как тепло разносится циркулирующей кровью по телу от места его образования к периферии и наоборот.

Количество крови в организме. Объем циркулирующей крови (ОЦК) .

В настоящее время имеются точные методы для определения общего количества крови в организме. Принцип этих методов заключается в том, что в кровь вводят известное количество вещества, а затем через определенные интервалы времени берутся пробы крови и в них определяется содержание введенного продукта. По степени полученного разбавления высчитывается объем плазмы. После этого кровь центрифугируют в капиллярной градуированной пипетке (гематокрите) для определения гематокритного показателя, т.е. соотношения форменных элементов и плазмы. Зная гематокритный показатель, легко определить и объем крови. В качестве индикаторов применяют нетоксичные медленно выводящиеся соединения, не проникающие через сосудистую стенку в ткани (красители, поливинилпиролидон, железодекстрановый комплекс и др.) В последнее время для этой цели широко используются радиоактивные изотопы.

Определения показывают, что в сосудах человека весом 70 кг. содержится примерно 5 литров крови, что составляет 7% массы тела (у мужчин 61,5+-8,6 мл/кг, у женщин - 58,9+-4,9 мл/кг массы тела).

Введение в кровь жидкости увеличивает на короткое время ее объем. Потери жидкости - уменьшают объем крови. Однако изменения общего количества циркулирующей крови, как правило, невелики, вследствие наличия процессов, регулирующих общий объем жидкости в кровеносном русле. Регуляция объема крови основана на поддержании равновесия между жидкостью в сосудах и тканях. Потери жидкости из сосудов быстро восполняются за счет поступления ее из тканей и наоборот. Более подробно о механизмах регуляции количества крови в организме мы будем говорить позднее.

1. Состав плазмы крови .

Плазма представляет собою желтоватого цвета слегка опалесцирующую жидкость, и является весьма сложной биологической средой, в состав которой входят белки, различные соли, углеводы, липиды, промежуточные продукты обмена веществ, гормоны, витамины и растворенные газы. В нее входят как органические, так и неорганические вещества (до 9%) и вода (91-92%). Плазма крови находится в тесной связи с тканевыми жидкостями организма. Из тканей в кровь поступает большое количество продуктов обмена, но, благодаря сложной деятельности различных физиологических систем организма, в составе плазмы в норме не происходит существенных изменений.

Количеств белков, глюкозы, всех катионов и бикарбоната удерживается на постоянном уровне и самые незначительные колебания в их составе приводят к тяжелым нарушениям в нормальной деятельности организма. В то же время содержание таких веществ, как липиды, фосфор, мочевина, может меняться в значительных пределах, не вызывая заметных расстройств в организме. Весьма точно регулируется в крови концентрация солей и водородных ионов.

Состав плазмы крови имеет некоторые колебания в зависимости от возраста, пола, питания, географических особенностей места проживания, времени и сезона года.

Белки плазмы крови и их функции . Общее содержание белков крови составляет 6,5-8,5%, в среднем -7,5%. Они различны по составу и количеству входящих в них аминокислот, растворимости, устойчивости в растворе при изменениях рН, температуры, солености, по электрофоретической плотности. Роль белков плазмы весьма многообразна: они принимают участие в регуляции водного обмена, в защите организма от иммуннотоксических воздействий, в транспорте продуктов обмена, гормонов, витаминов, в свертывании крови, питании организма. Обмен их происходит быстро, постоянство концентрации осуществляется путем непрерывного синтеза и распада.

Наиболее полное разделение белков плазмы крови осуществляется с помощью электрофореза. На электрофореграмме можно выделить 6 фракций белков плазмы:

Альбумины . Их содержится в крови 4,5-6,7%, т.е. 60-65% всех плазменных белков приходится на долю альбуминов. Они выполняют в основном питательно-пластическую функцию. Не менее важна транспортная роль альбуминов, так как они могут связывать и транспортировать не только метаболиты, но лекарства. При большом накоплении жира в крови часть его тоже связывается альбуминами. Поскольку альбуминам принадлежит очень высокая осмотическая активность, на их долю приходится до 80% всего коллоидно-осмотического (онкотического) давления крови. Поэтому уменьшение количества альбуминов ведет к нарушению водного обмена между тканями и кровью и появлению отеков. Синтез альбуминов происходит в печени. Молекулярный вес их 70-100 тыс., поэтому часть их может походить через почечный барьер и обратно всасываться в кровь.

Глобулины обычно всюду сопутствуют альбуминам и являются наиболее распространенными из всех известных белков. Общее количество глобулинов в плазме составляет 2,0-3,5%, т.е. 35-40% от всех белков плазмы. По фракциям их содержание следующее:

альфа1-глобулины - 0,22-0,55 г% (4-5%)

альфа2-глобулины - 0,41-0,71г% (7-8%)

бета-глобулины - 0,51-0,90 г% (9-10%)

гамма-глобулины - 0,81-1,75 г% (14-15%)

Молекулярный вес глобулинов 150-190 тыс. Место образования может быть различным. Большая часть синтезируется в лимфоидных и плазматических клетках ретикулоэндотелиальной системы. Часть - в печени. Физиологическая роль глобулинов многообразна. Так, гамма-глобулины являются носителями иммунных тел. Альфа- и бета- глобулины тоже имеют антигенные свойства, но специфической их функцией является участие в процессах свертывания (это плазменные факторы свертывания крови). Сюда же относятся большая часть ферментов крови, а так же трансферин, церуллоплазмин, гаптоглобины и др. белки.

Фибриноген . Этот белок составляет 0,2-0,4 г%, около 4% от всех белков плазмы крови. Имеет непосредственное отношение к свертыванию, во время которого выпадает в осадок после полимеризации. Плазма, лишенная фибриногена (фибрина), носит название кровяной сыворотки .

При различных заболеваниях, особенно приводящих к нарушениям белкового обмена, наблюдаются резкие изменения в содержании и фракционном составе белков плазмы. Поэтому анализ белков плазмы крови имеет диагностическое и прогностическое значение и помогает врачу судить о степени повреждения органов.

Небелковые азотистые вещества плазмы представлены аминокислотами (4-10 мг%), мочевиной (20-40 мг%), мочевой кислотой, креатином, креатинином, индиканом и др. Все эти продукты белкового обмена в сумме называются остаточным , или небелковым азотом. Содержание остаточного азота плазмы в норме колеблется от 30 до 40 мг. Среди аминокислот одна треть приходится на долю глютамина, который переносит в крови свободный аммиак. Увеличение количества остаточного азота наблюдается главным образом при почечной патологии. Количество небелкового азота в плазме крови мужчин выше, чем в плазме крови женщин.

Безазотистые органические вещества плазмы крови представлены такими продуктами, как молочная кислота, глюкоза (80-120 мг%), липиды, органические вещества пищи и многие другие. Общее их количество не превышает 300-500 мг%.

Минеральные вещества плазмы - это в основном катионы Na+, К+, Са+, Mg++ и анионами Cl-, HCO3, HPO4, H2PO4. Общее количество минеральных веществ (электролитов) в плазме достигает 1%. Количество катионов превышает количество анионов. Наибольшее значение имеют следующие минеральные вещества:

Натрий и калий . Количество натрия в плазме составляет 300-350 мг%, калия - 15-25 мг%. Натрий находится в плазме в виде хлористого натрия, бикарбонатов, а также в связанном с белками виде. Калий тоже. Ионы эти играют важную роль в поддержании кислотно-щелочного равновесия и осмотического давления крови.

Кальций . Общее его количество в плазме составляет 8-11 мг%. Он находится там или в связанном с белками виде, или в виде ионов. Ионы Са+ выполняют важную функцию в процессах свертывания крови, сократимости и возбудимости. Поддержание нормального уровня кальция в крови происходит при участии гормона паращитовидных желез, натрия - при участии гормонов надпочечников.

Кроме перечисленных выше минеральных веществ в плазме содержатся магний, хлориды, йод, бром, железо, и ряд микроэлементов, таких как медь, кобальт, марганец, цинк, и др., имеющие большое значение для эритропоэза, ферментативных процессов и т.п.

Физико-химические свойства крови

1.Реакция крови . Активная реакция крови определяется концентрацией в ней водородных и гидроксильных ионов. В норме кровь имеет слабощелочную реакцию (рН 7,36-7,45, в среднем 7,4+-0,05). Реакция крови является величиной постоянной. Это - обязательное условие нормального течения жизненных процессов. Изменение рН на 0,3-0,4 единицы приводит к тяжелым для организма последствиям. Границы жизни находятся в пределах рН крови 7,0-7,8. Организм удерживает величину рН крови на постоянном уровне благодаря деятельности специальной функциональной системы, в которой главное место уделяется имеющимся в самой крови химическим веществам, которые, нейтрализуя значительную часть поступающих в кровь кислот и щелочей, препятствуют сдвигам рН в кислую или щелочную сторону. Сдвиг рН в кислую сторону называется ацидоз , в щелочную - алкалоз.

К веществам, постоянно поступающим в кровь и могущим изменить величину рН, относятся молочная кислота, угольная кислота и другие продукты обмена, вещества, поступающие с пищей и др.

В крови имеются четыре буферные системы - бикарбонатная (углекислота/бикарбонаты), гемоглобиновая (гемоглобин / оксигемоглобин), белковая (кислые белки / щелочные белки) и фосфатная (первичный фосфат / вторичный фосфат).Подробно их работа изучается в курсе физической и коллоидной химии.

Все буферные системы крови, взятые вместе, создают в крови так называемый щелочной резерв , способный связывать кислые продукты, поступающие в кровь. Щелочной резерв плазмы крови в здоровом организме более или менее постоянен. Он может быть снижен при избыточном поступлении или образовании кислот в организме (например, при интенсивной мышечной работе, когда образуется много молочной и угольной кислот). Если это снижение щелочного резерва не привело еще к реальным изменениям рН крови, то такое состояние называют компенсированным ацидозом . При некомпенсированном ацидозе щелочной резерв расходуется полностью, что ведет к снижению рН (например, так бывает при диабетической коме).

Когда ацидоз связан с поступлением в кровь кислых метаболитов или других продуктов, он носит название метаболического или не газового. Когда же ацидоз возникает при накоплении в организме преимущественно углекислоты - он называется газовым . При избыточном поступлении в кровь продуктов обмена щелочного характера (чаще с пищей, так как продукты обмена в основном кислые) то щелочной резерв плазмы увеличивается (компенсированный алкалоз ). Он может увеличиваться, например, при усиленной гипервентиляции легких, когда имеет место избыточное удаление углекислоты из организма (газовый алкалоз). Некомпенсированный алкалоз бывает чрезвычайно редко.

Функциональная система поддержания рН крови (ФСрН) включает в себя целый ряд анатомически неоднородных органов, в комплексе позволяющих достигнуть очень важного для организма полезного результата - обеспечения постоянства рН крови и тканей. Появление кислых метаболитов или щелочных веществ крови сразу же нейтрализуется соответствующими буферными системами и одновременно от специфических хеморецепторов, заложенных как в стенках кровеносных сосудов, так и в тканях, в ЦНС поступают сигналы о возникновении сдвига в реакциях крови (если таковой действительно произошел). В промежуточном и продолговатом отделах мозга находятся центры, регулирующие постоянство реакции крови. Оттуда по афферентным нервам и по гуморальным каналам команды поступают к исполнительным органам, способным исправить нарушение гомеостаза. К числу таких органов относятся все органы выделения (почки, кожа, легкие), которые выбрасывают из организма как сами кислые продукты, так и продукты их реакций с буферными системами. Кроме того, в деятельности ФСрН принимают участие органы ЖКТ, которые могут быть как местом выделения кислых продуктов, так и местом, откуда всасываются необходимые для их нейтрализации вещества. Наконец, к числу исполнительных органов ФСрН относится и печень, где происходит дезинтоксикация потенциально вредных продуктов, как кислых так и щелочных. Надо отметить, что кроме этих внутренних органов, в ФСрН есть и внешнее звено - поведенческое, когда человек целенаправленно ищет во внешней среде вещества, которых ему не хватает для поддержания гомеостаза ("Кисленького хочется!"). Схема этой ФС представлена на схеме.

2. Удельный вес крови (УВ). УВ крови зависит в основном от числа эритроцитов, содержащегося в них гемоглобина и белкового состава плазмы. У мужчин он равен 1,057, у женщин - 1,053, что объясняется различным содержанием эритроцитов. Суточные колебания не превышают 0.003. Увеличение УВ закономерно наблюдается после физического напряжения и в условиях воздействия высоких температур, что свидетельствует о некотором сгущении крови. Понижение УВ после кровепотери связано с большим притоком жидкости из тканей. Наиболее распространенный метод определения - медно-сульфатный, принцип которого заключается в помещении капли крови в ряд пробирок с растворами сульфата меди известного удельного веса. В зависимости от УВ крови капля тонет, всплывает или плавает в том месте пробирки, где ее поместили.

3. Осмотические свойства крови . Осмосом называется проникновение молекул растворителя в раствор через разделяющую их полупроницаемую перепонку, через которую не проходят растворенные вещества. Осмос совершается и в том случае, если такая перегородка разделяет растворы с разной концентрацией. При этом растворитель перемещается через мембрану в сторону раствора с большей концентрацией до тех пор, пока эти концентрации не сравняются. Мерой осмотических сил является осмотическое давление (ОД). Оно равно такому гидростатическому давлению, который над приложить к раствору чтобы прекратить в него проникновение молекул растворителя. Величина эта определяется не химической природой вещества, а числом растворенных частиц. Она прямо пропорциональна молярной концентрации вещества. Одно- молярный раствор имеет ОД 22,4 атм., так как осмотическое давление определяется давлением, которое может оказывать в равном объеме растворенное вещество в виде газа (1гМ газа занимает объем 22,4 л. Если это количество газа поместить в сосуд объемом 1л, он будет давить на стенки с силой 22,4 атм.).

Осмотическое давление следует рассматривать не как свойство растворенного вещества, растворителя или раствора, а как свойство системы, состоящей из раствора, растворенного вещества и разделяющей их полупроницаемой перепонки.

Кровь как раз является такой системой. Роль полупроницаемой перегородки в этой системе играют оболочки клеток крови и стенки кровеносных сосудов, растворителем служит вода, в которой находятся минеральные и органические вещества в растворенном виде. Эти вещества создают в крови среднюю молярную концентрацию около 0,3 гМ, и поэтому развивают осмотическое давление, равное для крови человека 7,7 - 8,1 атм. Почти 60% этого давления приходится на долю поваренной соли (NaCl).

Величина осмотического давления крови имеет важнейшее физиологическое значение, так как в гипертонической среде вода выходит из клеток (плазмолиз ), а в гипотонической - наоборот, входит в клетки, раздувает их и даже может разрушить (гемолиз ).

Правда, гемолиз может наступать не только при нарушении осмотического равновесия, но и под действием химических веществ - гемолизинов. К ним относятся сапонины, желчные кислоты, кислоты и щелочи, аммиак, спирты, змеиный яд, бактериальные токсины и др.

Величина осмотического давления крови определяется криоскопическим методом, т.е. по точке замерзания крови. У человека температура замерзания плазмы равна -0,56-0,58оС. Осмотическое давление крови человека соответствует давлению 94% NaCl, такой раствор носит название физиологического .

В клинике, когда возникает необходимость введения в кровь жидкости, например, при обезвоживании организма, или при внутривенном введении лекарств обычно применяют этот раствор, который изотоничен плазме крови. Однако, хотя его и называют физиологическим, он таковым в строгом смысле не является, так как в нем отсутствуют остальные минеральные и органические вещества. Более физиологическими растворами являются такие, как раствор Рингера, Рингер-Локка, Тироде, Крепс-Рингера и т.п. Они приближаются к плазме крови по ионному составу (изоионичны). В ряде случаев, особенно для замены плазмы при кровепотере, применяются жидкости кровезаменители, приближающиеся к плазме не только по минеральному, но и по белковому, крупномолекулярному составу.

Дело в том, что белки крови играют большую роль в правильном водном обмене между тканями и плазмой. Осмотическое давление белков крови называется онкотическим давлением . Оно равно примерно 28 мм.рт.ст. т.е. составляет менее 1/200 общего осмотического давления плазмы. Но так как капиллярная стенка очень мало проницаема для белков и легко проходима для воды и кристаллоидов, то именно онкотическое давление белков является наиболее эффективным фактором, удерживающим воду в кровеносных сосудах. Поэтому уменьшение количества белков в плазме приводит к появлению отеков, к выходу воды из сосудов в ткани. Из белков крови наибольшее онкотическое давление развивают альбумины.

Функциональная система регуляции осмотического давления . Осмотическое давление крови млекопитающих и человека в норме держится на относительно постоянном уровне (опыт Гамбургера с введением в кровь лошади 7 л 5% раствора сернокислого натрия). Все это происходит за счет деятельности функциональной системы регуляции осмотического давления, которая тесно увязана с функциональной системой регуляции водно-солевого гомеостаза, так как использует те же исполнительные органы.

В стенках кровеносных сосудов имеются нервные окончания, реагирующие на изменения осмотического давления (осморецепторы ). Раздражение их вызывает возбуждение центральных регуляторных образований в продолговатом и промежуточном мозге. Оттуда идут команды, включающие те или иные органы, например, почки, которые удаляют избыток воды или солей. Из других исполнительных органов ФСОД надо назвать органы пищеварительного тракта, в которых происходит как выведение избытка солей и воды, так и всасывание необходимых для восстановления ОД продуктов; кожу, соединительная ткань которой вбирает в себя при понижении осмотического давления избыток воды или отдает ее последней при повышении осмотического давления. В кишечнике растворы минеральных веществ всасываются только в таких концентрациях, которые способствуют установлению нормального осмотического давления и ионного состава крови. Поэтому при приеме гипертонических растворов (английская соль, морская вода) происходит обезвоживание организма за счет выведения воды в просвет кишечника. На этом основано слабительное действие солей.

Фактором, способным изменять осмотическое давление тканей, а также крови, является обмен веществ, ибо клетки тела потребляют крупномолекулярные питательные вещества, и выделяют взамен значительно большее число молекул низкомолекулярных продуктов своего обмена. Отсюда понятно, почему венозная кровь, оттекающая от печени, почек, мышц имеет большее осмотическое давление, чем артериальная. Не случайно, что в этих органах находится наибольшее количество осморецепторов.

Особенно значительные сдвиги осмотического давления в целом организме вызывает мышечная работа. При очень интенсивной работе деятельность выделительных органов может оказаться недостаточной для сохранения осмотического давления крови на постоянном уровне и в итоге может наступить его увеличение. Сдвиг осмотического давления крови до 1,155% NaCl делает невозможным дальнейшее выполнение работы (один из компонентов утомления).

4. Суспензионные свойства крови . Кровь является устойчивой суспензией мелких клеток в жидкости (плазме), Свойство крови как устойчивой суспензии нарушается при переходе крови к статическому состоянию, что сопровождается оседанием клеток и наиболее отчетливо проявляется со стороны эритроцитов. Отмеченный феномен используется для оценки суспензионной стабильности крови при определении скорости оседания эритроцитов (СОЭ).

Если предохранить кровь от свертывания, то форменные элементы можно отделить от плазмы простым отстаиванием. Это имеет практическое клиническое значение, так как СОЭ заметно меняется при некоторых состояниях и болезнях. Так, СОЭ сильно ускоряется у женщин при беременности, у больных туберкулезом, при воспалительных заболеваниях. При стоянии крови эритроциты склеиваются друг с другом (агглютинируют), образуя так называемые монетные столбики, а затем и конгломераты монетных столбиков (агрегация), которые оседают тем быстрее, чем больше их величина.

Агрегация эритроцитов, их склеивание зависит от изменения физических свойств поверхности эритроцитов (возможно, с изменением знака суммарного заряда клетки с отрицательного на положительный), а также от характера взаимодействия эритроцитов с белками плазмы. Суспензионные свойства крови зависят преимущественно от белкового состава плазмы: увеличение содержания грубодисперсных белков при воспалении сопровождается снижением суспензионной устойчивости и ускорением СОЭ. Величина СОЭ зависит и от количественного соотношения плазмы и эритроцитов. У новорожденных СОЭ равна 1-2 мм/час, у мужчин 4-8 мм/час, у женщин 6-10 мм/час. Определяют СОЭ по методу Панченкова (см. практикум).

Ускоренной СОЭ, обусловленной изменением белков плазмы особенно при воспалении, соответствует и повышенная агрегация эритроцитов в капиллярах. Преимущественная агрегация эритроцитов в капиллярах связана с физиологическим замедлением тока крови в них. Доказано, что в условиях замедленного кровотока увеличение содержания в крови грубодисперсных белков приводит к более выраженной агрегации клеток. Агрегация эритроцитов, отражая динамичность суспензионных свойств крови, является одним из древнейших защитных механизмов. У беспозвоночных агрегация эритроцитов играет ведущую роль в процессах гемостаза; при воспалительной реакции это приводит к развитию стаза (остановки кровотока в пограничных областях), способствуя отграничению очага воспаления.

В последнее время доказано, что в СОЭ имеет значение не столько заряд эритроцитов, сколько характер его взаимодействия с гидрофобными комплексами белковой молекулы. Теория нейтрализации заряда эритроцитов белками не доказана.

5. Вязкость крови (реологические свойства крови). Вязкость крови, определяемая вне организма, превышает вязкость воды в 3-5 раз и зависит преимущественно от содержания эритроцитов и белков. Влияние белков определяется особенностями структуры их молекул: фибриллярные белки повышают вязкость в значительно большей степени, чем глобулярные. Выраженный эффект фибриногена связан не только с высокой внутренней вязкостью, но обусловлен и вызываемой им агрегацией эритроцитов. В физиологических условиях вязкость крови in vitro нарастает (до 70%) после напряженной физической работы и является следствием изменения коллоидных свойств крови.

In vivo вязкость крови характеризуется значительной динамичностью и меняется в зависимости от длины и диаметра сосуда и скорости кровотока. В отличие от однородных жидкостей, вязкость которых нарастает с уменьшением диаметра капилляра, со стороны крови отмечается обратное: в капиллярах вязкость уменьшается. Это связано с неоднородностью структуры крови, как жидкости, и изменением характера протекания клеток по сосудам разного диаметра. Так, эффективная вязкость, измеренная особыми динамическими вискозиметрами, такова: аорта - 4,3; малая артерия - 3,4; артериолы - 1,8; капилляры - 1; венулы - 10; малые вены - 8; вены 6,4. Показано, что если бы вязкость крови была бы постоянной величиной, то сердцу пришлось бы развивать в 30-40 раз большую мощность, чтобы протолкнуть кровь через сосудистую систему, так как вязкость участвует в формировании периферического сопротивления.

Снижение свертываемости крови в условиях введения гепарина сопровождается понижением вязкости и одновременно ускорением скорости кровотока. Показано, что вязкость крови всегда снижается при анемиях, повышается при полицитемиях, лейкемии, некоторых отравлениях. Кислород понижает вязкость крови, поэтому венозная кровь более вязкая, чем артериальная. При повышении температуры вязкость крови понижается.

Все форменные элементы крови - эритроциты, лейкоциты и тромбоциты - образуются в красном костном мозге. Несмотря на то что все клетки крови являются потомками единой кроветворной клетки - фибробластов, они выполняют различные специфические функции, в то же время общность происхождения наделила их и общими свойствами. Так, все клетки крови, независимо от их специфики, участвуют в транспорте различных веществ, выполняют защитные и регуляторные функции.

Эритроциты

Эритроциты, или красные клетки крови, впервые были обнаружены Мальпиги в крови лягушки (1661), а Левенгук (1673) показал, что они также присутствуют в крови человека и млекопитающих.

В крови человека содержится около 25 трлн красных кровяных телец. Если уложить рядом друг с другом все эритроциты, то получится цепочка длиной около 200 тыс. км, которой можно 5 раз опоясать земной шар по экватору. Если положить все эритроциты одного человека один на другой, то получится «столбик» высотой более 60 км.

Эритроциты имеют форму двояковогнутого диска, при поперечном разрезе напоминают гантели. Такая форма не только увеличивает поверхность клетки, но и способствует более быстрой и равномерной диффузии газов через клеточную мембрану. Если бы они имели форму шара, то расстояние от центра клетки до поверхности увеличилось в 3 раза, а общая площадь эритроцитов была бы на 20% меньше. Эритроциты отличаются большой эластичностью. Они легко проходят по капиллярам, имеющим вдвое меньший диаметр, чем сама клетка. Общая поверхность всех эритроцитов достигает 3000 м 2 , что в 1500 раз превышает поверхность тела человека. Такие соотношения поверхности и объема способствуют оптимальному выполнению основной функции эритроцитов - переносу кислорода от легких к клеткам организма.

В отличие от других представителей типа хордовых эритроциты млекопитающих - это безъядерные клетки. Утрата ядра привела к увеличению количества дыхательного фермента - гемоглобина. В одном эритроците находится около 400 млн молекул гемоглобина. Лишение ядра привело к тому, что сам эритроцит потребляет в 200 раз меньше кислорода, чем его ядерные представители (эритробласты и нормобласты).

В крови у мужчин содержится в среднем 5 10 12 /л эритроцитов (5 000 000 в 1 мкл), у женщин - около 4,5 10 12 /л эритроцитов (4 500 000 в 1 мкл).

В норме число эритроцитов подвержено незначительным колебаниям. При различных заболеваниях количество эритроцитов может уменьшаться. Подобное состояние носит название эритропения и часто сопутствует малокровию или анемии. Увеличение числа эритроцитов называется эритроцитозом.

Гемоглобин и его соединения. Основные функции эритроцитов обусловлены наличием в их составе особого белка хромопротеида - гемоглобина. Молекулярная масса гемоглобина человека равна 68 800. Гемоглобин - это дыхательный фермент, который находится в эритроцитах, а не в плазме, потому что:

  • обеспечивает уменьшение вязкости крови (растворение такого же количества гемоглобина в плазме повысило бы вязкость крови в несколько раз и затруднило бы работу сердца и кровообращение);
  • уменьшает онкотическое давление плазмы, предотвращая обезвоживание тканей;
  • предупреждает потерю организмом гемоглобина вследствие его фильтрации в клубочках почек и выделения с мочой.

Основное назначение гемоглобина - транспорт кислорода и углекислого газа. Кроме того, гемоглобин обладает буферными свойствами, а также способностью связывать токсические вещества.

Гемоглобин состоит из белковой части (глобин) и небелковой железосодержащей части (гем). На одну молекулу глобина приходится четыре молекулы гема. Железо, которое входит в состав гема, способно присоединять и отдавать кислород. При этом валентность железа не изменяется, т.е. оно остается двухвалентным. Железо входит в состав всех дыхательных ферментов.

В крови здорового человека содержание гемоглобина составляет 120-165 г/л (120-150 г/л для женщин, 130-160 г/л для мужчин).

В норме гемоглобин содержится в виде трех физиологических соединений: восстановленного, оксигемоглобина и карбоксигемоглобина. Гемоглобин, присоединивший кислород, превращается в оксигемоглобин - НЬ0 2 . Это соединение ярко-алого цвета, от которого зависит цвет артериальной крови. Один грамм гемоглобина способен присоединить 1,34 мл кислорода.

Оксигемоглобин, отдавший кислород, называют восстановленным гемоглобином (НЬ). Он находится в венозной крови, которая имеет темно-вишневый цвет. Кроме того, в венозной крови содержится соединение гемоглобина с углекислым газом - карбогемоглобин (НЬС0 2), который транспортирует углекислый газ из тканей к легким.

Гемоглобин обладает способностью образовывать и патологические соединения. Одним из них является карбоксигемоглобин - соединение гемоглобина с угарным газом (НЬСО). Сродство железа гемоглобина к угарному газу превышает сродство к кислороду, поэтому даже 0,1% угарного газа в воздухе ведет к превращению 80% гемоглобина в карбоксигемоглобин, который не способен присоединять кислород, что является опасным для жизни. Слабое отравление угарным газом - обратимый процесс. При дыхании свежим воздухом угарный газ отщепляется. Вдыхание чистого кислорода увеличивает скорость расщепления НЬСО в 20 раз.

Метгемоглобин (MetHb) - тоже патологическое соединение, является окисленным гемоглобином, в котором под влиянием сильных окислителей (феррацианид, перманганат калия, пероксид водорода, анилин и др.) железо гема из двухвалентного превращается в трехвалентное. При накоплении в крови в большом количестве метгемоглобина транспорт кислорода тканями нарушается и может наступить смерть.

В скелетных мышцах и миокарде находится мышечный гемоглобин, называемый миоглобином. Его небелковая часть аналогична гемоглобину крови, а белковая часть - глобин - обладает меньшей молекулярной массой. Миоглобин человека связывает 14% общего количества кислорода в организме. Это его свойство играет важную роль в снабжении работающих мышц. При сокращении мышц их кровеносные капилляры сдавливаются и кровоток уменьшается либо прекращается. Однако благодаря наличию кислорода, связанного с миоглобином, в течение некоторого времени снабжение мышечных волокон кислородом сохраняется.

Гемолиз и его причины. Гемолизом называется разрыв оболочки эритроцита и выход гемоглобина в плазму, благодаря чему кровь приобретает лаковый оттенок. В искусственных условиях гемолиз эритроцитов может быть вызван помещением их в гипотонический раствор - осмотический гемолиз. Для здоровых людей минимальная граница осмотической стойкости соответствует раствору, содержащему 0,42-0,48% NaCl, полный же гемолиз (максимальная граница стойкости) происходит при концентрации 0,30-0,34% NaCl.

Гемолиз может быть вызван химическими агентами (хлороформ, эфир и др.), разрушающими мембрану эритроцитов, - химический гемолиз. Нередко встречается гемолиз при отравлении уксусной кислотой. Гемолизирующим свойством обладают яды некоторых змей - биологический гемолиз.

При сильном встряхивании ампулы с кровью также наблюдается разрушение мембраны эритроцитов - механический гемолиз. Он может проявляться у больных с протезированием клапанного аппарата сердца и сосудов, а иногда возникает при ходьбе (маршевая гемогло- бинурия) из-за травмирования эритроцитов в капиллярах стоп.

Если эритроциты заморозить, а потом отогреть, то возникает гемолиз, получивший наименование термического. Наконец, при переливании несовместимой крови и наличии аутоантител к эритроцитам развивается иммунный гемолиз. Последний является причиной возникновения анемий и нередко сопровождается выделением гемоглобина и его производных с мочой (гемоглобинурия).

Скорость оседания эритроцитов (СОЭ ). Если кровь поместить в пробирку, предварительно добавив в нее вещества, препятствующие свертыванию, то через некоторое время кровь разделится на два слоя: верхний состоит из плазмы, а нижний представляет собой форменные элементы, главным образом эритроциты. Исходя из этих свойств,

Фарреус предложил изучать суспензионную устойчивость эритроцитов, определяя скорость их оседания в крови, свертываемость которой устранялась предварительным добавлением цитрата натрия. Этот показатель получил название «скорость оседания эритроцитов (СОЭ)» или «реакция оседания эритроцитов (РОЭ)».

Величина СОЭ зависит от возраста и пола. В норме у мужчин этот показатель равен 6-12 мм в час, у женщин - 8-15 мм в час, у пожилых людей обоего пола - 15-20 мм в час.

Наибольшее влияние на величину СОЭ оказывает содержание белков фибриногена и глобулинов: при увеличении их концентрации СОЭ повышается, так как уменьшается электрический заряд мембраны клеток и они легче «склеиваются» между собой по типу монетных столбиков. СОЭ резко увеличивается во время беременности, когда содержание фибриногена в плазме возрастает. Это физиологическое повышение; предполагают, что оно обеспечивает защитную функцию организма во время вынашивания плода. Повышение СОЭ наблюдается при воспалительных, инфекционных и онкологических заболеваниях, а также при значительном уменьшении числа эритроцитов (анемия). Уменьшение СОЭ у взрослых людей и детей старше 1 года является неблагоприятным признаком.

Лейкоциты

Лейкоциты, или белые клетки крови, представляют собой образования различной формы и величины. По строению лейкоциты делятся на зернистые , или гранулоциты , и незернистые , или аграну- лоциты. К гранулоцитам относятся нейтрофилы, эозинофилы и ба- зофилы, к агранулоцитам - лимфоциты и моноциты. Свое наименование клетки зернистого ряда получили от способности окрашиваться красками: эозинофилы воспринимают кислую краску (эозин), базофилы - щелочную (гематоксилин), нейтрофилы - и ту, и другую.

В норме количество лейкоцитов у взрослых людей колеблется от 4,5 до 8,5 тыс. в 1 мм 3 , или (4,5-8,5) 10 9 /л.

Увеличение числа лейкоцитов носит название лейкоцитоза, уменьшение - лейкопении. Лейкоцитозы могут быть физиологическими и патологическими, а лейкопении встречаются только при патологии.

Физиологические лейкоцитозы. Лейкопении. Различают следующие виды физиологических лейкоцитозов:

  • пищевой - возникает после приема пищи. При этом число лейкоцитов увеличивается незначительно (в среднем на 1-3 тыс. в мкл) и редко выходит за границу верхней физиологической нормы. Большое количество лейкоцитов скапливается в подслизистой основе тонкой кишки. Здесь они осуществляют защитную функцию - препятствуют попаданию чужеродных агентов в кровь и лимфу. Пищевой лейкоцитоз носит перераспределительный характер и обеспечивается поступлением лейкоцитов в кровоток из депо крови;
  • миогенный - наблюдается после выполнения тяжелой мышечной работы. Число лейкоцитов при этом может возрастать в 3-5 раз. Огромное количество лейкоцитов при физической нагрузке скапливается в мышцах. Миогенный лейкоцитоз носит как перераспределительный, так и истинный характер, так как при нем наблюдается усиление костномозгового кроветворения;
  • эмоциональный - возникает при болевом раздражении, носит перераспределительный характер и редко достигает высоких показателей;
  • при беременности большое количество лейкоцитов скапливается в подслизистой основе матки. Этот лейкоцитоз в основном носит местный характер. Его физиологический смысл состоит не только в предупреждении попадания инфекции в организм матери, но и в стимулировании сократительной функции матки.

Лейкопении встречаются только при патологических состояниях.

Особенно тяжелая лейкопения может наблюдаться в случае поражения костного мозга - острых лейкозах и лучевой болезни. При этом изменяется функциональная активность лейкоцитов, что приводит к нарушениям специфической и неспецифической защиты, попутным заболеваниям, часто инфекционного характера, и даже смерти.

Характеристика отдельных видов лейкоцитов:

нейтрофилы - самая большая группа белых кровяных телец, они составляют 50-75% всех лейкоцитов. В крови циркулирует не более 1% имеющихся в организме нейтрофилов. Основная их часть сосредоточена в тканях. Наряду с этим, в костном мозге имеется резерв, превосходящий число циркулирующих нейтрофилов в 50 раз. Выброс их в кровь происходит по «первому требованию» организма.

Основная функция нейтрофилов - защита организма от проникших в него микробов и их токсинов. Нейтрофилы первыми прибывают в место повреждения тканей, т.е. являются авангардом лейкоцитов. Их появление в очаге воспаления связано со способностью к активному передвижению. Они выпускают псевдоподии, проходят через стенку капилляров и активно перемещаются в тканях к месту проникновения микробов. Скорость их движения достигает 40 мкм в минуту, что в 3-4 раза превышает диаметр клетки. Выход лейкоцитов в ткани называют миграцией. Контактируя с живыми или мертвыми микробами, с разрушающимися клетками собственного организма или чужеродными частицами, нейтрофилы фагоцитируют их, переваривают и уничтожают за счет собственных ферментов и бактерицидных веществ. Один нейтрофил способен фагоцитировать 20-30 бактерий, но при этом может погибнуть сам (в таком случае бактерии продолжают размножаться);

  • эозинофилы составляют 1-5% всех лейкоцитов. Эозинофилы обладают фагоцитарной способностью, но из-за малого количества в крови их роль в этом процессе невелика. Основная функция эозинофилов - обезвреживание и разрушение токсинов белкового происхождения, чужеродных белков, комплексов антиген- антитело. Эозинофилы фагоцитируют гранулы базофилов и тучных клеток, которые содержат много гистамина; продуцируют фермент гистаминазу, разрушающую поглощенный гистамин. При аллергических состояниях, глистной инвазии и антибактериальной терапии количество эозинофилов возрастает. Это связано с тем, что при данных состояниях разрушается большое количество тучных клеток и базофилов, из которых освобождается много гистамина, для нейтрализации которого необходимы эозинофилы. Одной из функций эозинофилов является выработка плазминогена, что определяет их участие в процессе фибринолиза;
  • базофилы (0- 1 % всех лейкоцитов) - самая малочисленная группа гранулоцитов. Функции базофилов обусловлены наличием в них биологически активных веществ. Они, как и тучные клетки соединительной ткани, продуцируют гистамин и гепарин. Количество базофилов нарастает во время регенеративной (заключительной) фазы острого воспаления и немного увеличивается при хроническом воспалении. Гепарин базофилов препятствует свертыванию крови в очаге воспаления, а гистамин расширяет капилляры, что способствует процессам рассасывания и заживления.

Значение базофилов возрастает при различных аллергических реакциях, когда из них и тучных клеток под влиянием комплекса ангиген-антитело освобождается гистамин. Он определяет клинические проявления крапивницы, бронхиальной астмы и других аллергических заболеваний.

Количество базофилов резко возрастает при лейкозах, стрессовых ситуациях и слегка увеличивается при воспалении;

моноциты составляют 2-4% всех лейкоцитов, способны к амебовидному движению, проявляют выраженную фагоцитарную и бактерицидную активность. Моноциты фагоцитируют до 100 микробов, в то время как нейтрофилы - лишь 20-30. Моноциты появляются в очаге воспаления после нейтрофилов и проявляют максимум активности в кислой среде, в которой нейтрофилы теряют активность. В очаге воспаления моноциты фагоцитируют микробы, а также погибшие лейкоциты, поврежденные клетки воспаленной ткани, очищая очаг воспаления и подготавливая его для регенерации. За эту функцию моноциты называют «дворниками организма».

Они циркулируют до 70 ч, а затем мигрируют в ткани, где образуют обширное семейство тканевых макрофагов. Кроме фагоцитоза, макрофаги участвуют в формировании специфического иммунитета. Поглощая чужеродные вещества, они перерабатывают их и переводят в особое соединение - иммуноген, который совместно с лимфоцитами формирует специфический иммунный ответ.

Макрофаги участвуют в процессах воспаления и регенерации, обмене липидов и железа, обладают противоопухолевым и противовирусным действием. Это связано с тем, что они секретируют лизоцим, интерферон, фиброгенный фактор, усиливающий синтез коллагена и ускоряющий формирование фиброзной ткани;

лимфоциты составляют 20-40% белых кровяных телец. У взрослого человека содержится 10 12 лимфоцитов общей массой 1,5 кг. Лимфоциты, в отличие от всех других лейкоцитов, способны не только проникать в ткани, но и возвращаться обратно в кровь. Они отличаются от других лейкоцитов и тем, что живут не несколько дней, а 20 лет и более (некоторые - на протяжении всей жизни человека).

Лимфоциты - центральное звено иммунной системы организма. Они отвечают за формирование специфического иммунитета и осуществляют функцию иммунного надзора {«цензуры») в организме, обеспечивая защиту от всего чужеродного и сохраняя генетическое постоянство внутренней среды. Лимфоциты обладают удивительной способностью различать в организме «свое» и «чужое» вследствие наличия в их оболочке специфических участков - рецепторов, активирующихся при контакте с чужеродными белками. Лимфоциты осуществляют синтез защитных антител, лизис чужеродных клеток, обеспечивают реакцию отторжения трансплантата, иммунную память (способность отвечать усиленной реакцией на повторную встречу с чужеродным антигеном), уничтожение собственных мутантных клеток и др.

Каждая из перечисленных функций осуществляется специализированными формами лимфоцитов. Все лимфоциты делятся на три группы: Г-лимфоциты (тимусзависимые), ^-лимфоциты (бурсаза- висимые) и нулевые.

Т-лимфоциты образуются в красном костном мозге из клеток- предшественников, проходят дифференцирование в вилочковой железе и затем расселяются в лимфатических узлах, селезенке или циркулируют в крови, где на их долю приходится 40-70% всех лимфоцитов.

Различают несколько форм Г-лимфоцитов, каждая из которых выполняет определенную функцию: клетки-хелперы (помощники) взаимодействуют с 5-лимфоцитами, превращая их в плазматические клетки; клетки-супрессоры (угнетатели) блокируют чрезмерные реакции 5-лимфоцитов и поддерживают постоянное соотношение разных форм лимфоцитов; клетки-киллеры (убийцы) непосредственно осуществляют реакции клеточного иммунитета, взаимодействуя с чужеродными клетками и разрушая опухолевые клетки, клетки чужеродных трансплантатов, клетки-мутанты, что сохраняет генетический гомеостаз.

5-лимфоциты играют ведущую роль в иммунном надзоре. При ослаблении их функций возрастает опасность развития опухолей, аутоиммунных заболеваний (когда собственные ткани организма воспринимаются как чужие), повышается склонность к разным инфекциям.

В-лимфоциты образуются в красном костном мозге, но у млекопитающих проходят дифференцирование в лимфоидной ткани кишечника, червеобразного отростка, нёбных и глоточных миндалин. В крови на их долю приходится 20-30% циркулирующих лимфоцитов. Основная функция 5-лимфоцитов - создание гуморального иммунитета путем выработки антител. После встречи с антигеном 5-лимфоциты мигрируют в костный мозг, селезенку и лимфатические узлы, где размножаются и трансформируются в плазматические клетки, которые являются продуцентами антител - иммунных у-глобулинов.

5-лимфоциты очень специфичны: каждая группа (клон) реагирует лишь с одним антигеном и отвечает за выработку антител только против него. Среди 5-лимфоцитов тоже существует специализация.

Нулевые лимфоциты не проходят дифференцирования в органах иммунной системы, но при необходимости способны превратиться в 5- или 5-лимфоциты. На их долю приходится 10-20% лимфоцитов крови.

Лимфоциты обеспечивают целостность организма не только путем защиты его от чужеродных агентов. Эти клетки несут макромолекулы с информацией, необходимой для управления генетическим аппаратом других клеток организма. Это имеет важное значение в процессах роста, дифференцировки, регенерации.

РЕГУЛИРОВАНИЕ В ОРГАНИЗМЕ ЧИСЛЕННОСТИ
ФОРМЕННЫХ ЭЛЕМЕНТОВ КРОВИ

Численность форменных элементов крови должна быть оптимальной и соответствовать уровню обмена веществ, зависящему от характера и интенсивности работы органов и систем, условий существования организма. Так, при повышенной температуре воздуха, интенсивной мышечной работе и низком давлении количество клеток крови увеличивается. В этих условиях затрудняется образование оксигемоглобина, а обильное потоотделение приводит к увеличению вязкости крови, уменьшению её текучести; организм испытывает недостаток кислорода.

На эти изменения наиболее быстро реагирует вегетативная система человека: из кровяного депо выбрасывается находящаяся в нём кровь; из-за повышенной активности органов дыхания и кровообращения возникает одышка, сердцебиение; возрастает давление крови; снижается уровень обмена веществ.

При продолжительном нахождении в таких условиях включаются нейрогуморальные механизмы регуляции, активизирующие процессы образования форменных элементов. Например, у жителей горных местностей число эритроцитов повышается до 6 млн в 1 мм 3 , а концентрация гемоглобина приближается к верхнему пределу. У людей, занятых тяжёлым физическим трудом, отмечается хронический рост количества лейкоцитов: они активно утилизируют обломки повреждённых мышечных клеток.

Количество форменных элементов в крови контролируется рецепторами, которые располагаются во всех кроветворных и кроверазрушающих органах: красном костном мозге, селезёнке, лимфатических узлах. От них информация поступает в нервные центры головного мозга, в основном гипоталамус. Возбуждение нервных центров рефлекторно включает механизмы саморегуляции, изменяет деятельность системы крови в соответствии с требованиями конкретной ситуации.

В первую очередь увеличивается скорость движения и объём циркулируемой крови. В случае, если организму не удаётся быстро восстановить гомеостаз, в работу включаются железы внутренней секреции, например гипофиз.

Любое изменение характера нервных процессов в коре больших полушарий при всех видах деятельности организма отражается на клеточном составе крови. При этом включаются долгосрочные механизмы регуляции кроветворения и кроверазрушения, ведущая роль в которых принадлежит гуморальным влияниям.

Специфическое действие на образование эритроцитов оказывают витамины.

Так, витамин В 12 стимулирует синтез глобина, витамин В 6 - синтез гема, витамин В 2 ускоряет образование мембраны эритроцита, а витамин А - всасывание в кишечнике железа.

1. Кровь, межклеточное вещество и лимфа образуют … (внутреннюю среду организма ).

2. Жидкая соединительная ткань - …

Таблица форменные элементы крови человека

(кровь ).

3. Растворенный в плазме белок, необходимый для свертывания крови, - … (фибриноген ).

4. Кровяной сгусток - … (тромб ).

5. Плазма крови без фибриногена называется … (сывороткой крови ).

6. Содержание хлорида натрия в физиологическом растворе составляет … (0,9% ).

7. Безъядерные форменные элементы крови, содержащие гемоглобин, - … (эритроциты ).

8. Состояние организма, при котором в крови уменьшается количество эритроцитов либо содержание гемоглобина в них, - … (анемия, или малокровие ).

9. Человек, дающий свою кровь для переливания, - … (донор ).

10. Каждая группа крови отличается от других содержанием особых белков в … (плазме ) и в … (эритроцитах ).

11. Явление поглощения и переваривания лейкоцитами микробов и иных чужеродных тел называется … (фагоцитозом ).

12. Защитная реакция организма, например, против инфекций - … (воспаление ).

13. Способность организма защищать себя от болезнетворных микробов и вирусов - … (иммунитет ).

14. Культура ослабленных или убитых микробов, вводимых в организм человека, - … (вакцина ).

15. Вещества, вырабатываемые лимфоцитами при контакте с чужеродным организмом или белком, - … (антитела ).

16. Препарат готовых антител, выделенных из крови животного, которое было специально заражено, - …

(сыворотка ).

17. Иммунитет, наследуемый ребенком от матери, - … (врожденный ).

18. Иммунитет, приобретенный после прививки, - … (искусственный ).

19. Состояние повышенной чувствительности организма к антигенам - … (аллергия ).

Эритроциты возникли в процессе эволюции как клетки, содержащие дыхательные пигменты, которые осуществляют перенос кислорода и диоксида углерода. Они имеют форму безъядерного двояковогнутого диска, диаметр которого составляет 0,007 мм, толщина – 0,002 мм. В 1 мм3 крови человека содержится 4,5–5 млн эритроцитов. Общая поверхность всех эритроцитов, через которую происходит поглощение и отдача О2 и СО2, составляет около 3000 м2, что в 1500 раз превышает поверхность всего тела.

Образуются эритроциты в красном костном мозге, разрушаются в печени и селезенке. Продолжительность их жизни – около 120 суток.

Дыхательный пигмент эритроцитов – гемоглобин – легко присоединяет и отдает кислород без изменения валентности железа. Один грамм гемоглобина способен связать 1,3 мл кислорода. Абсолютное содержание гемоглобина у взрослого человека составляет в среднем 12,5-14% от веса крови и достигает 17% (17 г гемоглобина в 100 г крови). При анализе крови определяют обычно относительное содержание гемоглобина. Оно отражает в процентах отношение фактического наличия гемоглобина в 100 г крови к 17 г и колеблется в пределах 70-100%. При некоторых болезненных состояниях содержание гемоглобина в крови изменяется. Так, основным признаком малокровия (анемии) является пониженное содержание гемоглобина. При этом может быть уменьшено количество эритроцитов в крови или понижено содержание гемоглобина в них (иногда и то, и другое).

Гемоглобин в кровеносных капиллярах легких насыщается кислородом и превращается в оксигемоглобин, придающий крови ярко-алый цвет. В тканях и органах кислород отщепляется; гемоглобин восстанавливается и присоединяет диоксид углерода, превращаясь в карбогемоглобин. Цвет такой крови (венозной) темно-красный. В легких диоксид углерода отщепляется от гемоглобина, он восстанавливается и присоединяет кислород.

Гемоглобин способен образовывать и патологические соединения. Одним из них является карбоксигемоглобин – соединение гемоглобина с угарным газом. Это соединение в 300 раз прочнее оксигемоглобина. Отравление угарным газом опасно для жизни, так как резко снижается транспорт кислорода.

Для диагностики патологических явлений используют величину скорости оседания эритроцитов (СОЭ) крови, к которой добавлены противосвертывающие вещества (например, раствор лимоннокислого натрия). В норме величина СОЭ у мужчин равна 3–10 мм/ч, у женщин – 7–12 мм/ч. Увеличение СОЭ больше указанных величин является признаком патологии.

Форменные элементы крови

Лейкоциты – белые кровяные тельца, выполняющие защитную функцию. В крови взрослого человека лейкоцитов содержится 6-8 тыс. в 1 мм3, но их число может изменяться после приема пищи, мышечной работы, во время сильных эмоций. У здоровых людей соотношение между всеми видами лейкоцитов довольно постоянно и изменение его служит признаком различных заболеваний. При инфекционных и некоторых других заболеваниях их число резко увеличивается (лейкоцитоз). При лучевой болезни наблюдается значительное уменьшение числа лейкоцитов (лейкопения). Лейкоциты делятся на две группы (табл. 1): зернистые (гранулоциты: нейтрофилы, эозинофилы, базофилы) и незернистые (агранулоциты: моноциты, лимфоциты).

Таблица 1

Страницы: 1 2

Также смотрите:

Кровь состоит из жидкой части плазмы и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. На долю форменных элементов приходится 40 – 45%, на долю плазмы – 55 – 60% от объема крови. Это соотношение получило название гематокритного соотношения, или гематокритного числа. Часто под гематокритным числом понимают только объем крови, приходящийся на долю форменных элементов.

Плазма крови

В состав плазмы крови входят вода (90 – 92%) и сухой остаток (8 – 10%). Сухой остаток состоит из органических и неорганических веществ. К органическим веществам плазмы крови относятся белки, которые составляют 7 – 8%. Белки представлены альбуминами (4,5%), глобулинами (2 – 3,5%) и фибриногеном (0,2 – 0,4%).

Белки плазмы крови выполняют разнообразные функции: 1) коллоидно-осмотический и водный гомеостаз; 2) обеспечение агрегатного состояния крови; 3) кислотно-основной гомеостаз; 4) иммунный гомеостаз; 5) транспортная функция; б) питательная функция; 7) участие в свертывании крови.

Альбумины составляют около 60% всех белков плазмы.

Благодаря относительно небольшой молекулярной массе (70000) и высокой концентрации альбумины создают 80% онкотического давления. Альбумины осуществляют питательную функцию, являются резервом аминокислот для синтеза белков. Их транспортная функция заключается в переносе холестерина, жирных кислот, билирубина, солей желчных кислот, солей тяжелых металлов, лекарственных препаратов (антибиотиков, сульфаниламидов). Альбумины синтезируются в печени.

Глобулины подразделяются на несколько фракций: a -, b — и g -глобулины.

a -Глобулины включают гликопротеины, т.е. белки, простетической группой которых являются углеводы. Около 60% всей глюкозы плазмы циркулирует в составе гликопротеинов. Эта группа белков транспортирует гормоны, витамины, микроэлементы, липиды. К a -глобулинам относятся эритропоэтин, плазминоген, протромбин.

b -Глобулины участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, катионов металлов. К этой фракции относится белок трансферрин, обеспечивающий транспорт железа, а также многие факторы свертывания крови.

g -Глобулины включают в себя различные антитела или иммуноглобулины 5 классов: Jg A, Jg G, Jg М, Jg D и Jg Е, защищающие организм от вирусов и бактерий. К g -глобулинам относятся также a и b – агглютинины крови, определяющие ее групповую принадлежность.

Глобулины образуются в печени, костном мозге, селезенке, лимфатических узлах.

Фцбриноген – первый фактор свертывания крови. Под воздействием тромбина переходит в нерастворимую форму – фибрин, обеспечивая образование сгустка крови. Фибриноген образуется в печени.

Белки и липопротеиды способны связывать поступающие в кровь лекарственные вещества. В связанном состоянии лекарства неактивны и образуют как бы депо. При уменьшении концентрации лекарственного препарата в сыворотке он отщепляется от белков и становится активным. Это надо иметь в виду, когда на фоне введения одних лекарственных веществ назначаются другие фармакологические средства. Введенные новые лекарственные вещества могут вытеснить из связанного состояния с белками ранее принятые лекарства, что приведет к повышению концентрации их активной формы.

К органическим веществам плазмы крови относятся также небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатинин, аммиак). Общее количество небелкового азота в плазме, так называемого остаточного азота, составляет 11 – 15 ммоль/л (30 – 40 мг%).

Характеристика форменных элементов крови

В плазме крови содержатся также безазотистые органические вещества: глюкоза 4,4 – 6,6 ммоль/л (80 – 120 мг%), нейтральные жиры, липиды, ферменты, расщепляющие гликоген, жиры и белки, проферменты и ферменты, участвующие в процессах свертывания крови и фибринолиза. Неорганические вещества плазмы крови составляют 0,9 – 1%. К этим веществам относятся в основном катионы Nа+, Са2+, К+, Mg2+ и анионы Сl-, НРО42-, НСО3-. Содержание катионов является более жесткой величиной, чем содержание анионов. Ионы обеспечивают нормальную функцию всех клеток организма, в том числе клеток возбудимых тканей, обусловливают осмотическое давление, регулируют рН.

В плазме постоянно присутствуют все витамины, микроэлементы, промежуточные продукты метаболизма (молочная и пировиноградная кислоты).

Форменные элементы крови

К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты.

Рис 1. Форменные элементы крови человека в мазке.

1 – эритроцит, 2 – сегментоядерный нейтрофильный гранулоцит,

3 – палочкоядерный нейтрофильный гранулоцит, 4 – юный нейтрофильный гранулоцит, 5 – эозинофильный гранулоцит, 6 – базофильный гранулоцит, 7 – большой лимфоцит, 8 – средний лимфоцит, 9 – малый лимфоцит,

10 – моноцит, 11 – тромбоциты (кровяные пластинки).

Эритроциты

В норме в крови у мужчин содержится 4,0 – 5,0х10"/л, или 4 000 000 – 5 000 000 эритроцитов в 1 мкл, у женщин – 4,5х10"/л, или 4 500 000 в 1 мкл. Повышение количества эритроцитов в крови называется эритроцитозом, уменьшение эритропенией, что часто сопутствует малокровию, или анемии. При анемии может быть снижено или число эритроцитов, или содержание в них гемоглобина, или и то и другое. Как эритроцитозы, так и эритропении бывают ложными в случаях сгущения или разжижения крови и истинными.

Эритроциты человека лишены ядра и состоят из стромы, заполненной гемоглобином, и белково-липидной оболочки. Эритроциты имеют преимущественно форму двояковогнутого диска диаметром 7,5 мкм, толщиной на периферии 2,5 мкм, в центре – 1,5 мкм. Эритроциты такой формы называются нормоцитами. Особая форма эритроцитов приводит к увеличению диффузионной поверхности, что способствует лучшему выполнению основной функции эритроцитов – дыхательной. Специфическая форма обеспечивает также прохождение эритроцитов через узкие капилляры. Лишение ядра не требует больших затрат кислорода на собственные нужды и позволяет более полноценно снабжать организм кислородом. Эритроциты выполняют в организме следующие функции: 1) основной функцией является дыхательная – перенос кислорода от альвеол легких к тканям и углекислого газа от тканей к легким;

2) регуляция рН крови благодаря одной из мощнейших буферных систем крови – гемоглобиновой;

3) питательная – перенос на своей поверхности аминокислот от органов пищеварения к клеткам организма;

4) защитная – адсорбция на своей поверхности токсических веществ;

5) участие в процессе свертывания крови за счет содержания факторов свертывающей и противосвертывающей систем крови;

6) эритроциты являются носителями разнообразных ферментов (холинэстераза, угольная ангидраза, фосфатаза) и витаминов (В1, В2, В6, аскорбиновая кислота);

7) эритроциты несут в себе групповые признаки крови.

Рис 2.

Нормальные эритроциты в форме двояковогнутого диска.

Б. Сморщенные эритроциты в гипертоническом солевом растворе

Гемоглобин и его соединения

Гемоглобин – особый белок хромопротеида, благодаря которому эритроциты выполняют дыхательную функцию и поддерживают рН крови. У мужчин в крови содержится в среднем 130 – 1б0 г/л гемоглобина, у женщин – 120 – 150 г/л.

Гемоглобин состоит из белка глобина и 4 молекул гема. Гем имеет в своем составе атом железа, способный присоединять или отдавать молекулу кислорода. При этом валентность железа, к которому присоединяется кислород, не изменяется, т.е. железо остается двухвалентным. Гемоглобин, присоединивший к себе кислород, превращается в оксигемоглобин. Это соединение непрочное. В виде оксигемоглобина переносится большая часть кислорода. Гемоглобин, отдавший кислород, называется восстановленным, или дезоксигемоглобином. Гемоглобин, соединенный с углекислым газом, носит название карбгемоглобина. Это соединение также легко распадается. В виде карбгемоглобина переносится 20% углекислого газа.

В особых условиях гемоглобин может вступать в соединение и с другими газами. Соединение гемоглобина с угарным газом (СО) называется карбоксигемоглобином. Карбоксигемоглобин является прочным соединением. Гемоглобин блокирован в нем угарным газом и неспособен осуществлять перенос кислорода. Сродство гемоглобина к угарному газу выше его сродства к кислороду, поэтому даже небольшое количество угарного газа в воздухе является опасным для жизни.

При некоторых патологических состояниях, например, при отравлении сильными окислителями (бертолетовой солью, перманганатом калия и др.) образуется прочное соединение гемоглобина с кислородом – метгемоглобин, в котором происходит окисление железа, и оно становится трехвалентным. В результате этого гемоглобин теряет способность отдавать кислород тканям, что может привести к гибели человека.

В скелетных и сердечной мышцах находится мышечный гемоглобин, называемый миоглобином. Он играет важную роль в снабжении кислородом работающих мышц.

Имеется несколько форм гемоглобина, отличающихся строением белковой части – глобина. У плода содержится гемоглобин F. В эритроцитах взрослого человека преобладает гемоглобин А (90%). Различия в строении белковой части определяют сродство гемоглобина к кислороду. У фетального гемоглобина оно намного больше, чем у гемоглобина А. Это помогает плоду не испытывать гипоксии при относительно низком парциальном напряжении кислорода в его крови.

Ряд заболеваний связан с появлением в крови патологических форм гемоглобина. Наиболее известной наследственной патологией гемоглобина является серповидноклеточная анемия, Форма эритроцитов напоминает серп. Отсутствие или замена нескольких аминокислот в молекуле глобина при этом заболевании приводит к существенному нарушению функции гемоглобина.

В клинических условиях принято вычислять степень насыщения эритроцитов гемоглобином. Это так называемый цветовой показатель. В норме он равен 1. Такие эритроциты называются нормохромными. При цветовом показателе более 1,1 эритроциты гиперхромные, менее 0,85 – гипохромные. Цветовой показатель важен для диагностики анемий различной этиологии.

С.В. ВИНОГРАДОВА,
средняя школа № 1532, г. Москва

Эритроциты и лейкоциты

Сюжетно-ролевая игра при изучении темы «Кровь»

Кровь под микроскопом

Игра проходит в форме пресс-конференции по обсуждению проблемы строения клеток крови и их функций в организме. Роли корреспондентов газет и журналов, освещающих проблемы гематологии, специалистов по гематологии и переливанию крови исполняют учащиеся. Заранее определены темы для обсуждения и выступлений «специалистов» на пресс-конференции.

1. Эритроциты: особенности строения и функции.
2. Малокровие.
3. Переливание крови.
4. Лейкоциты, их строение и функции.

Подготовлены вопросы, которые будут задаваться «специалистам», присутствующим на пресс-конференции.
На уроке используют таблицу «Кровь» и таблицы, подготовленные учащимися.

ТАБЛИЦА
Форменные элементы крови

Группы крови и варианты их переливания

Определение групп крови на лабораторных стеклышках

Научный сотрудник Института гематологии. Уважаемые коллеги и журналисты, разрешите открыть нашу пресс-конференцию.

Вы мы знаем, что кровь состоит из плазмы и клеток. Хотелось бы узнать, как и кем были открыты эритроциты.

Научный сотрудник. Однажды Антони ван Левенгук порезал палец и рассмотрел кровь под микроскопом. В однородной красной жидкости он увидел многочисленные образования розоватого цвета, напоминающие шарики. В центре они были чуть светлее, чем по краям. Левенгук назвал их красными шариками. Впоследствии их стали называть красными кровяными клетками.

Корреспондент журнала «Химия и жизнь». Сколько же у человека эритроцитов и как их можно сосчитать?

Научный сотрудник. Впервые подсчет эритроцитов произвел ассистент Института патологии в Берлине Рихард Тома. Он создал камеру, которая представляла собой толстое стекло с углублением для крови. На дне углубления была выгравирована сетка, видимая только под микроскопом. Кровь разводили в 100 раз. Подсчитывали количество клеток над сеткой, а затем умножали полученное число на 100. Столько эритроцитов было в 1 мл крови. Всего у здорового человека 25 трлн эритроцитов. Если количество их уменьшается, скажем, до 15 трлн, то человек чем-то болен. В этом случае транспортировка кислорода из легких в ткани нарушается. Наступает кислородное голодание. Первый его признак – одышка при ходьбе. У больного начинает кружиться голова, появляется шум в ушах, снижается работоспособность. Врач констатирует у больного малокровие. Малокровие излечимо. Усиленное питание и свежий воздух помогают восстановить здоровье.

Журналист газеты «Комсомольская правда». Почему эритроциты так важны для человека?

Научный сотрудник. Ни одна клетка нашего организма не похожа на эритроцит. Все клетки имеют ядра, а у эритроцитов их нет. Большинство клеток неподвижны, эритроциты двигаются, правда, не самостоятельно, а с током крови. Эритроциты имеют красный цвет за счет содержащегося в них пигмента – гемоглобина. Природа идеально приспособила эритроциты для выполнения основной роли – транспортировки кислорода: благодаря отсутствию ядра высвобождается дополнительное место для гемоглобина, которым заполнена клетка. В одном эритроците содержится 265 молекул гемоглобина. Основная задача гемоглобина – транспортировка кислорода от легких к тканям.
При прохождении крови по легочным капиллярам гемоглобин, соединяясь с кислородом, превращается в соединение гемоглобина с кислородом – оксигемоглобин. Оксигемоглобин имеет ярко-алую окраску – этим и объясняется алый цвет крови в малом круге кровообращения. Такая кровь называется артериальной. В тканях организма, куда по капиллярам попадает кровь из легких, кислород отщепляется от оксигемоглобина и используется клетками. Освободившийся же при этом гемоглобин присоединяет к себе накопившуюся в тканях углекислоту, образуется карбоксигемоглобин.
Если этот процесс остановится, клетки организма уже через несколько минут начнут погибать. В природе имеется еще одно вещество, которое так же активно, как и кислород, соединяется с гемоглобином. Это оксид углерода, или угарный газ. Вступая в соединение с гемоглобином, он образует метгемоглобин. Гемоглобин после этого временно теряет способность соединяться с кислородом, и наступает тяжелейшее отравление, иногда заканчивающееся смертью.

Корреспондент газеты «Известия». При некоторых заболеваниях человеку делают переливание крови.

Старение системы крови. Форменные элементы крови

Кто первым классифицировал группы крови?

Научный сотрудник. Первым, кто выделил группы крови, был врач Карл Ландштейнер. Он окончил Венский университет и занимался изучением свойств крови человека. Ландштейнер взял шесть пробирок с кровью разных людей, дал ей отстояться. При этом кровь разделилась на два слоя: верхний – соломенно-желтый, и нижний – красный. Верхний слой представляет собой сыворотку, а нижний – эритроциты.
Ландштейнер смешивал эритроциты из одной пробирки с сывороткой из другой. В некоторых случаях эритроциты из однородной массы, которую они представляли собой ранее, разбивались на отдельные небольшие сгустки. Под микроскопом было видно, что они состоят из слипшихся друг с другом эритроцитов. В других пробирках сгустки не образовались.
Почему сыворотка из одной пробирки склеивала эритроциты из второй пробирки, но не склеивала эритроциты из третьей пробирки? День за днем Ландштейнер повторял опыты, получая все те же результаты. Если эритроциты одного человека склеиваются сывороткой другого, рассуждал Ландштейнер, значит, в эритроцитах содержатся антигены, а в сыворотке – антитела. Антигены, которые находятся в эритроцитах разных людей, Ландштейнер обозначил латинскими буквами A и B, а антитела к ним – греческими буквами a и b. Склеивание эритроцитов не наступает, если антител к их антигенам в сыворотке нет. Поэтому ученый делает вывод, что кровь разных людей неодинакова и ее следует разделить на группы.
Он проделал тысячи опытов, пока не установил окончательно: кровь всех людей в зависимости от свойств можно разделить на три группы. Каждую из них он назвал латинскими буквами по алфавиту A, B и C. К группе A он отнес людей, у которых в эритроцитах содержится антиген A, к группе B – людей с антигеном B в эритроцитах, а к группе C – людей, в эритроцитах которых не было ни антигена A, ни антигена B.

Свои наблюдения он изложил в статье «Об агглютинативных свойствах нормальной человеческой крови» (1901).
В начале XX в. в Праге работал врач-психиатр Ян Янский. Он искал причину психических заболеваний в свойствах крови. Эту причину он не нашел, но установил, что у человека существует не три, а четыре группы крови. Четвертая встречается реже, чем первые три. Именно Янский дал группам крови порядковые обозначения римскими цифрами: I, II, III, IV. Такая классификация оказалась очень удобной и была официально утверждена в 1921 г.
В настоящее время принято буквенное обозначение групп крови: I (0), II (А), III (B), IV (АВ). После исследований Ландштейнера стало ясно, почему раньше переливание крови часто заканчивалось трагически: кровь донора и кровь реципиента оказывались несовместимыми. Определение группы крови перед каждым переливанием сделало этот метод лечения совершенно безопасным.

Корреспондент журнала «Наука и жизнь». Какова роль лейкоцитов в организме человека?

Научный сотрудник. В нашем организме часто происходят невидимые сражения. Вы занозили палец, и уже через несколько минут к месту повреждения устремляются лейкоциты. Они вступают в борьбу с микробами, которые проникли вместе с занозой. Палец начинает нарывать. Это защитная реакция, направленная на удаление инородного тела – занозы. В месте внедрения занозы образуется гной, который состоит из «трупов» лейкоцитов, погибших в «бою» с инфекцией, а также разрушенных клеток кожи и подкожно-жировой клетчатки. Наконец нарыв лопается, и заноза удаляется вместе с гноем.
Впервые этот процесс описал русский ученый Илья Ильич Мечников. Он обнаружил фагоциты, которые врачи называют нейтрофилами. Их можно сравнить с пограничными войсками: они находятся в крови и лимфе и первыми вступают в схватку с врагом. За ними движутся своеобразные санитары, еще один вид лейкоцитов, они пожирают «трупы» погибших в бою клеток.
Как же передвигаются лейкоциты навстречу микробам? На поверхности лейкоцита появляется небольшой бугорок – ложноножка. Она постепенно увеличивается и начинает раздвигать окружающие клетки. Лейкоцит как бы переливает в нее свое тело и через несколько десятков секунд оказывается уже на новом месте. Так лейкоциты проникают через стенки капилляров в окружающие ткани и обратно в кровеносный сосуд. Кроме того, для передвижения лейкоциты используют ток крови.
В организме лейкоциты находятся в постоянном движении – работа им всегда находится: часто они борются с вредными микроорганизмами, обволакивая их. Микроб оказывается внутри лейкоцита, и начинается процесс «переваривания» с помощью выделяемых лейкоцитами ферментов. Так же лейкоциты очищают организм от разрушенных клеток – ведь в нашем теле постоянно происходят процессы рождения молодых клеток и гибели старых.
Способность «переваривать» клетки во многом зависит от содержащихся в лейкоцитах многочисленных ферментов. Представим себе, что в организм попадает возбудитель брюшного тифа – эта бактерия, как, впрочем, и возбудители других болезней, представляет собой организм, строение белков которого отличается от строения белков человека. Такие белки получили название антигенов.
В ответ на попадание антигена в плазме крови человека появляются особые белки – антитела. Они обезвреживают пришельцев, вступая с ними в разнообразные реакции. Антитела против многих инфекционных заболеваний остаются в плазме человека на всю жизнь. Лифмоциты составляют 25–30% от всего количества лейкоцитов. Они представляют собой круглые маленькие клетки. Основную часть лимфоцита занимает ядро, покрытое тоненькой оболочкой цитоплазмы. Лимфоциты «живут» в крови, лимфе, лимфатических узлах, селезенке. Именно лимфоциты являются организаторами нашей иммунной реакции.
Учитывая важную роль лейкоцитов в организме, гематологи применяют переливание их больным. Из крови с помощью специальных методов выделяют лейкоцитарную массу. Концентрация лейкоцитов в ней в несколько сот раз больше, чем в крови.

Лейкоцитарная масса – очень нужный препарат.
При некоторых заболеваниях количество лейкоцитов в крови больных снижается в 2–3 раза, что представляет большую опасность для организма. Такое состояние называется лейкопенией. При тяжелой лейкопении организм не в состоянии бороться с различными осложнениями, например воспалением легких. Без лечения больные часто погибают. Иногда наблюдается она и при лечении злокачественных опухолей. В настоящее время при первых признаках лейкопении больным назначают лейкоцитарную массу, что часто позволяет добиться стабилизации количества лейкоцитов в крови.

1. Кровь - это жидкая ткань, циркулирующая по сосудам, осуществляющая транспорт различных веществ в пределах организма и обеспечивающая питание и обмен ве-ществ всех клеток тела. Красный цвет крови придает гемоглобин , содер-жащийся в эритроцитах.

У многоклеточных организмов большинство клеток не имеет непо-средственного контакта с внешней средой, их жизнедеятельность обеспе-чивается наличием внутренней среды (кровь, лимфа , тканевая жидкость). Из нее они получают необходимые для жизни вещества и выделяют в нее же продукты метаболизма . Для внутренней среды организма характерно относительное динамическое постоянство состава и физико-химических свойств, которое называется гомеостазом . Морфологическим субстратом, регулирующим обменные процессы между кровью и тканями и поддерживающим гомеостаз, являются гисто-гематические барьеры, состоящие из эндотелия капилляров , базальной мембраны, соединительной ткани, клеточных липопротеидных мембран.

В понятие "система крови" входят: кровь, органы кроветворения (красный костный мозг , лимфатические узлы и др.), органы кроворазрушения и механизмы регуляции (регулирующий нейрогуморальный аппарат). Система крови представляет собой одну из важнейших систем жизнеобеспечения организма и выполняет множество функций. Остановка сердца и прекращение движения крови немедленно приводит организм к гибели.

Физиологические функции крови:

4) терморегуляторная - регуляция температуры тела путем охлаж-дения энергоемких органов и согревания органов, теряющих тепло;

5) гомеостатическая - поддержание стабильности ряда констант гомеостаза: рН, осмотического давления, изоионии и т.д.;

Лейкоциты выполняют множество функций:

1) защитная - борьба с чужеродными агентами; они фагоцитируют (поглощают) чужеродные тела и уничтожают их;

2) антитоксическая - выработка антитоксинов, обезвреживающих продукты жизнедеятельности микробов;

3) выработка антител, обеспечивающих иммунитет, т.е. невос-приимчивость к заразным болезням;

4) участвуют в развитии всех этапов воспаления, стимулируют вос-становительные (регенеративные) процессы в организме и ускоряют за-живление ран;

5) ферментативная - они содержат различные ферменты, необхо-димые для осуществления фагоцитоза;

6) участвуют в процессах свертывания крови и фибринолиза путем выработки гепарина, гнетамина, активатора плазминогена и т.д.;

7) являются центральным звеном иммунной системы организма, осуществляя функцию иммунного надзора ("цензуры"), защиты от всего чужеродного и сохраняя генетический гомеостаз (Т-лимфоциты);

8) обеспечивают реакцию отторжения трансплантата, уничтожение собственных мутантных клеток;

9) образуют активные (эндогенные) пирогены и формируют лихора-дочную реакцию;

10) несут макромолекулы с информацией, необходимой для управле-ния генетическим аппаратом других клеток организма; путем таких меж-клеточных взаимодействий (креаторных связей) восстанавливается и под-держивается целостность организма.

4 . Тромбоцит или кровяная пластинка, - участвующий в свертывании крови форменный эле-мент, необходимый для поддержания целостности сосудистой стенки. Представляет собой округлое или овальное безъядерное образование диа-метром 2-5 мкм. Тромбоциты образуются в красном костном мозге из ги-гантских клеток - мегакариоцитов. В 1 мкл (мм 3) крови у человека в норме содержится 180-320 тысяч тромбоцитов. Увеличение количества тромбо-цитов в периферической крови называется тромбоцитозом, уменьшение - тромбоцитопенией. Продолжительность жизни тромбоцитов составляет 2- 10 дней.

Основными физиологическими свойствами тромбоцитов являются:

1) амебовидная подвижность за счет образования ложноножек;

2) фагоцитоз, т.е. поглощение инородных тел и микробов;

3) прилипание к чужеродной поверхности и склеивание между со-бой, при этом они образуют 2-10 отростков, за счет которых происходит прикрепление;

4) легкая разрушаемость;

5) выделение и поглощение различных биологически активных ве-ществ типа серотонина, адреналина, норадреналина и др.;

Все эти свойства тромбоцитов обусловливают их участие в остановке кровотечения.

Функции тромбоцитов:

1) активно участвуют в процессе свертывания крови и растворения кровяного сгустка (фибринолиза);

2) участвуют в остановке кровотечения (гемостазе) за счет при-сутствующих в них биологически активных соединений;

3) выполняют защитную функцию за счет склеивания (агглютина-ции) микробов и фагоцитоза;

4) вырабатывают некоторые ферменты (амилолитические, протеоли-тические и др.), необходимые для нормальной жизнедеятельности тромбо-цитов и для процесса остановки кровотечения;

5) оказывают влияние на состояние гистогематических барьеров ме-жду кровью и тканевой жидкостью путем изменения проницаемости сте-нок капилляров;

6) осуществляют транспорт креаторных веществ, важных для сохра-нения структуры сосудистой стенки; без взаимодействия с тромбоцитами эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты.

Скорость (реакция) оседания эритроцитов (сокращенно СОЭ) - показатель, отражающий изменения физико-химических свойств крови и измеряемой величиной столба плазмы, освобождающейся от эритроцитов при их оседании из цитратной смеси (5% раствор цитрата натрия) за 1 час в специальной пипетке прибора Т.П. Панченкова.

В норме СОЭ равна:

У мужчин - 1-10 мм/час;

У женщин - 2-15 мм/час;

Новорожденные — от 2 до 4 мм/ч;

Дети первого года жизни — от 3 до 10 мм/ч;

Дети возрастом 1-5 лет — от 5 до 11 мм/ч;

Дети 6-14 лет — от 4 до 12 мм/ч;

Старше 14 лет — для девочек — от 2 до 15 мм/ч, а для мальчиков — от 1 до 10 мм/ч.

у беременных женщин перед родами - 40-50 мм/час.

Увеличение СОЭ больше указанных величин является, как правило, признаком патологии. Величина СОЭ зависит не от свойств эритроцитов, а от свойств плазмы, в первую очередь от содержания в ней крупномолеку-лярных белков - глобулинов и особенно фибриногена. Концентрация этих белков возрастает при всех воспалительных процессах. При беременности содержание фибриногена перед родами почти в 2 раза больше нормы, по-этому СОЭ достигает 40-50 мм/час.

Лейкоциты имеют свой, независимый от эритроцитов режим оседа-ния. Однако скорость оседания лейкоцитов в клинике во внимание не при-нимается.

Гемостаз (греч. haime - кровь, stasis - неподвижное состояние) - это остановка движения крови по кровеносному сосуду, т.е. остановка кровотечения.

Различают 2 механизма остановки кровотечения:

1) сосудисто-тромбоцитарный (микроциркуляторный) гемостаз;

2) коагуляционный гемостаз (свертывание крови).

Первый механизм способен самостоятельно за несколько минут оста-новить кровотечение из наиболее часто травмируемых мелких сосудов с довольно низким кровяным давлением.

Он слагается из двух процессов:

1) сосудистого спазма, приводящего к временной остановке или уменьшению кровотечения;

2) образования, уплотнения и сокращения тромбоцитарной пробки, приводящей к полной остановке кровотечения.

Второй механизм остановки кровотечения - свертывание крови (гемокоагуляция) обеспечивает прекращение кровопотери при повреждении крупных сосудов, в основном мышечного типа.

Осуществляется в три фа-зы:

I фаза - формирование протромбиназы;

II фаза - образование тромбина;

III фаза - превращение фибриногена в фибрин.

В механизме свертывания крови, помимо стенки кровеносных сосудов и форменных элементов, при-нимает участие 15 плазменных факторов: фибриноген, протромбин, ткане-вой тромбопластин, кальций, проакцелерин, конвертин, антигемофильные глобулины А и Б, фибринстабилизирующий фактор, прекалликреин (фак-тор Флетчера), высокомолекулярный кининоген (фактор Фитцджеральда) и др.

Большинство этих факторов образуется в печени при участии вита-мина К и является проферментами, относящимися к глобулиновой фрак-ции белков плазмы. В активную форму - ферменты они переходят в про-цессе свертывания. Причем каждая реакция катализируется ферментом, образующимся в результате предшествующей реакции.

Пусковым механизмом свертывания крови служит освобождение тромбопластина поврежденной тканью и распадающимися тромбоцитами. Для осуществления всех фаз процесса свертывания необходимы ионы кальция.

Кровяной сгусток образуют сеть из волокон нерастворимого фибрина и опутанные ею эритроци-ты, лейкоциты и тромбоциты. Прочность обра-зовавшегося кровяного сгустка обеспечивается фактором XIII - фибрин-стабилиризующим фактором (ферментом фибриназой, синтезируемой в печени). Плазма крови, лишенная фибриногена и некоторых других ве-ществ, участвующих в свертывании, называется сывороткой. А кровь, из которой удален фибрин, называется дефибринированной.

Время полного свертывания капиллярной крови в норме составляет 3-5 минут, венозной крови - 5-10 мин.

Кроме свертывающей системы, в организме имеются одновременно еще две системы: противосвертывающая и фибринолитическая.

Противосвертывающая система препятствует процессам внутрисосудистого свер-тывания крови или замедляет гемокоагуляцию. Главным антикоагулянтом этой системы является гепарин, выделяемый из ткани легких и печени, и продуцируемый базофильными лейкоцитами и тканевыми базофилами (тучными клетками соединительной ткани). Количество базофильных лей-коцитов очень мало, зато все тканевые базофилы организма имеют массу 1,5 кг. Гепарин тормозит все фазы процесса свертывания крови, подавляет активность многих плазменных факторов и динамические превращения тромбоцитов. Выделяемый слюнными железами медицинских пиявок ги-рудин действует угнетающе на третью стадию процесса свертывания кро-ви, т.е. препятствует образованию фибрина.

Фибринолитическая система способна растворять образовавшийся фибрин и тромбы и является антиподом свертывающей системы. Главная функция фибринолиза - расщепление фибрина и восстановление просвета закупоренного сгустком сосуда. Расщепление фибрина осуществляется протеолитическим ферментом плазмином (фибринолизином), который находится в плазме в виде профермента плазминогена. Для его превраще-ния в плазмин имеются активаторы, содержащиеся в крови и тканях, и ингибиторы (лат. inhibere - сдерживать, останавливать), тормозящие пре-вращение плазминогена в плазмин.

Нарушение функциональных взаимосвязей между свертывающей, противосвертывающей и фибринолитической системами может привести к тяжелым заболеваниям: повышенной кровоточивости, внутрисосудистому тромбообразованию и даже эмболии.

Группы крови - совокупность признаков, характеризующих антигенную структуру эритроцитов и специфичность антиэритроцитарных антител, которые учитываются при подборе крови для трансфузий (лат. transfusio - переливание).

В 1901 г. австриец К. Ландштейнер и в 1903 г. чех Я. Янский обна-ружили, что при смешивании крови разных людей часто наблюдается склеивание эритроцитов друг с другом - явление агглютинации (лат. agglutinatio - склеивание) с последующим их разрушением (гемолизом). Было установлено, что в эритроцитах имеются агглютиногены А и В, склеиваемые вещества гликолипидного строения, антигены. В плазме бы-ли найдены агглютинины α и β, видоизмененные белки глобулиновой фракции, антитела, склеивающие эритроциты.

Агглютиногены А и В в эритроцитах, как и агглютинины α и β в плазме, у разных людей могут быть по одному или вместе, либо отсутствовать. Агглютиноген А и агглю-тинин α, а также В и β называются одноименными. Склеивание эритроци-тов происходит в том случае, если эритроциты донора (человека, дающего кровь) встречаются с одноименными агглютининами реципиента (челове-ка, получающего кровь), т.е. А + α, В + β или АВ + αβ. Отсюда ясно, что в крови каждого человека находятся разноименные агглютиноген и агглю-тинин.

Согласно классификации Я. Янского и К. Ландштейнера у людей име-ется 4 комбинации агглютиногенов и агглютининов, которые обозначают-ся следующим образом: I(0) - αβ., II(А) - А β, Ш(В) - В α и IV(АВ). Из этих обозначений следует, что у людей 1 группы в эритроцитах отсутствуют агглютиногены А и В, а в плазме имеются оба агглютинина α и β . У людей II группы эритроциты имеют агглютиноген А, а плазма - агглютинин β. К III группе относятся люди, у которых в эритроцитах находится агглютино-ген В, а в плазме - агглютинин α. У людей IV группы в эритроцитах со-держатся оба агглютиногена А и В, а агглютинины в плазме отсутствуют. Исходя из этого, нетрудно представить, каким группам можно переливать кровь определенной группы (схема 24).

Как видно из схемы, людям I группы можно переливать кровь только этой группы. Кровь же I группы можно переливать людям всех групп. По-этому людей с I группой крови называют универсальными донорами. Лю-дям с IV группой можно переливать кровь всех групп, поэтому этих людей называют универсальными реципиентами. Кровь же IV группы можно пе-реливать людям с кровью IV группы. Кровь людей II и III групп можно переливать людям с одноименной, а также с IV группой крови.

Однако в настоящее время в клинической практике переливают толь-ко одногруппную кровь, причем в небольших количествах (не более 500 мл), или переливают недостающие компоненты крови (компонентная те-рапия). Это связано с тем, что:

во-первых, при больших массивных переливаниях разведения агглю-тининов донора не происходит, и они склеивают эритроциты реципиента;

во-вторых, при тщательном изучении людей с кровью I группы были обнаружены иммунные агглютинины анти-А и анти-В (у 10-20% людей); переливание такой крови людям с другими группами крови вызывает тя-желые осложнения. Поэтому людей с I группой крови, содержащих агглю-тинины анти-А и анти-В, сейчас называют опасными универсальными до-норами;

в-третьих, в системе АВО выявлено много вариантов каждого агглю-тиногена. Так, агглютиноген А существует более, чем в 10 вариантах. Раз-личие между ними состоит в том, что А1 является самым сильным, а А2-А7 и другие варианты обладают слабыми агглютинационными свойствами. Поэтому кровь таких лиц может быть ошибочно отнесена к I группе, что может привести к гемотрансфузионным осложнениям при перелива-нии ее больным с I и III группами. Агглютиноген В тоже существует в не-скольких вариантах, активность которых убывает в порядке их нумерации.

В 1930 г. К. Ландштейнер, выступая на церемонии вручения ему Но-белевской премии за открытие групп крови, предположил, что в будущем будут открыты новые агглютиногены, а количество групп крови будет расти до тех пор, пока не достигнет числа живущих на земле людей. Это предположение ученого оказалось верным. К настоящему времени в эрит-роцитах человека обнаружено более 500 различных агглютиногенов. Толь-ко из этих агглютиногенов можно составить более 400 млн. комбинаций, или групповых признаков крови.

Если же учитывать и все остальные агг-лютиногены, встречающиеся в крови, то число комбинаций достигнет 700 млрд., т.е значительно больше, чем людей на земном шаре. Это определяет удивительную антигенную неповторимость, и в этом смысле каждый че-ловек имеет свою группу крови. Данные системы агглютиногенов отлича-ются от системы АВО тем, что не содержат в плазме естественных агглю-тининов, подобных α- и β-агглютининам. Но при определенных условиях к этим агглютиногенам могут вырабатываться иммунные антитела - агг-лютинины. Поэтому повторно переливать больному кровь от одного и того же донора не рекомендуется.

Для определения групп крови нужно иметь стандартные сыворотки, содержащие известные агглютинины, или цоликлоны анти-А и анти-В, содержащие диагностические моноклональные антитела. Если смешать каплю крови человека, группу которого надо определить, с сывороткой I, II, III групп или с цоликлонами анти-А и анти-В, то по наступившей агг-лютинации можно определить его группу.

Несмотря на простоту метода в 7-10% случаев группа крови опреде-ляется неверно, и больным вводят несовместимую кровь.

Для избежания такого осложнения перед переливанием крови обязательно проводят:

1) определение группы крови донора и реципиента;

2) резус-принадлежность крови донора и реципиента;

3) пробу на индивидуальную совместимость;

4) биологическую пробу на совместимость в процессе переливания: вливают вначале 10-15 мл донорской крови и затем в течение 3-5 минут наблюдают за состоянием больного.

Перелитая кровь всегда действует многосторонне. В клинической практике выделяют:

1) заместительное действие - замещение потерянной крови;

2) иммуностимулирующее действие - с целью стимуляции защитных сил;

3) кровоостанавливающее (гемостатическое) действие - с целью ос-тановки кровотечения, особенно внутреннего;

4) обезвреживающее (дезинтоксикационное) действие - с целью уменьшения интоксикации;

5) питательное действие - введение белков, жиров, углеводов в лег-коусвояемом виде.

кроме основных агглютиногенов А и В, в эритроцитах могут быть другие дополнительные, в частности так называемый резус-агглютиноген (резус-фактор). Впервые он был найден в 1940 г. К.Ландштейнером и И.Винером в крови обезьяны макаки-резуса. У 85% людей в крови имеется этот же резус-агглютиноген. Такая кровь на-зывается резус-положительной. Кровь, в которой отсутствует резус-агглютиноген, называется резус-отрицательной (у 15% людей). Система резус имеет более 40 разновидностей агглютиногенов - О, С, Е, из которых наиболее активен О.

Особенностью резус-фактора является то, что у лю-дей отсутствуют антирезус-агглютинины. Однако если человеку с резус-отрицательной кровью повторно переливать резус-положительную кровь, то под влиянием введенного резус-агглютиногена в крови выра-батываются специфические антирезус-агглютинины и гемолизины. В этом случае переливание резус-положительной крови этому человеку может вызвать агглютинацию и гемолиз эритроцитов - возникнет гемотрансфузионный шок.

Резус-фактор передается по наследству и имеет особое значение для течения беременности. Например, если у матери отсутствует резус-фактор, а у отца он есть (вероятность такого брака составляет 50%), то плод может унаследовать от отца резус-фактор и оказаться резус-положительным. Кровь плода проникает в организм матери, вызывая образование в ее кро-ви антирезус-агглютининов. Если эти антитела поступят через плаценту обратно в кровь плода, произойдет агглютинация. При высокой концен-трации антирезус-агглютининов может наступить смерть плода и выки-дыш. При легких формах резус-несовместимости плод рождается живым, но с гемолитической желтухой.

Резус-конфликт возникает лишь при высокой концентрации антирезус-гглютининов. Чаще всего первый ребенок рождается нормальным, по-скольку титр этих антител в крови матери возрастает относительно медленно (в течение нескольких месяцев). Но при повторной беременности резус-отрицательной женщины резус-положительным плодом угроза резус-конфликта нарастает вследствие образования новых порций антирезус-агглютининов. Резус-несовместимость при беременности встречается не очень часто: примерно один случай на 700 родов.

Для профилактики резус-конфликта беременным резус-отрица-тельным женщинам назначают антирезус-гамма-глобулин, который ней-трализует резус-положительные антигены плода.